K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 Second internal test question paper 2023-24 odd semester

Bran Cour	SET: A USN I Degree B.E Semester I Branch - Stream CSE, CSD, AI&ML- CSE STREAM Course Type / Code Integration Fourse Title APPLIED PHYSICS FOR CSE-Stream Date 26/12/ Duration I ½ Hr (90 minutes) Max Marks 50				
	Note: Answer ONE full question from each module.				
	K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating,	K6-Cr Ma	eating	K-	
Q No.	Questions	rks	CO	Level	
	Module 3	5	CO3	К2	
1(a)	Explain Orthogonality and Orthonormality with an example for each. (u)	5			
(b)	Given $ \psi\rangle = \begin{pmatrix} \sigma_1 \\ \sigma_2 \end{pmatrix}$ and $ \phi\rangle = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ Prove that $\langle \psi \phi \rangle = \langle \phi \psi \rangle^*$		CO3	К3	
	OR	5	603	1/2	
2(a)	Explain the working of phase gate mentioning its matrix representation and truth table.		CO3	K2	
(b)	Make use of qubits and find the matrix representation of 'X'. A Linear Operator 'X'	5	CO3	К3	
(6)	operates such that $X 0\rangle = 1\rangle$ and $X 1\rangle = 0\rangle$. Module 4				
	Explain the failures of classical free electron theory and assumptions of quantum free	8	CO4	К2	
3(a)	electron theory of metals.		04	112	
(b)	Explain Meissner's Effect and the variation of critical field with temperature.	8	CO4	К2	
(c)	Make use of critical field equation and find the critical field at 2K when a superconducting tin has a critical temperature of 3.7 K at zero magnetic field and a critical field of 0.0306 Tesla at 0 K.	4	CO4	К3	
	OR				
4(a)	Explain the phenomenon of superconductivity and discuss qualitatively the BCS theory of superconductivity for negligible resistance of metal at temperatures close to absolute zero.	8	CO4	K2	
(b)	Explain RF Squid with the help of a neat sketch.	8	CO4	К2	
(c)	Make use of fermi factor and find the temperature at which there is 1% probability that a state with an energy 0.5 eV above Fermi energy is occupied.	4	CO4	К3	
	Module 5	0	CO5	1/2	
5(a)	Explain the importance of size & scale and weight and strength in animations.	8 8	CO5 CO5	К2	
(b)	Explain the general pattern of monte Carlo method and hence determine the value of π .	U	000	К2	
(c)	Make use of poisons model calculate the probability at K=0,1,2, for a volcanic eruption occurred once in 100 years.	4	CO5	К3	
	OR	0			
6(a)	Explain modeling the probability for proton decay	8	CO5 CO5	К2	
(b)	Explain timing in linear motion, slow-in and slow-out	8	105	К2	
(c)	Make use of odd rule multiplier, calculate the base distance and the number of frames in sequence when a slowing-in object in an animation has a first frame distance 0.5m and the first slow in frame 0.35m.	4	C05	КЗ	

De Rember 1 Course In charge:

D. Rember H Module Coordinator:

100 ſ

Principal

SET-A

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 SECOND INTERNAL TEST 2023 – 24 ODD SEMESTER

SCHEME AND SOLUTION

Degree		BE	Semester : 1
e			Course Type / Code : INTERGRATED
branch - stream	:	CSE, CSD, AL&ML	Max Marks : 50
Course Title	:	APPLIED PHYSICS FOR CSE	VIAX VIALKS : 55

Q.NO.	POINTS	MARKS
		2
la	Orthogonality and Orthonormality conditions	3
	examples	2.5
16	$\langle \psi \phi \rangle = (\alpha_1^* \alpha_2^*) \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \beta_1 \alpha_1^* + \beta_2 \alpha_2^*$	
	$\frac{\langle \psi \phi \rangle^*}{\langle \psi \phi \rangle^*} = \beta_1^* \alpha_1 + \beta_2^* \alpha_2$	2.5
2 a	$(\psi \psi) - \beta_1 u_1 + \beta_2 u_2$	2.5, 2.5
2 a	Phase gate $s = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$ truth table	
2 b	Let $X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$, operating on 0) and 1), we find, $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	2.5, 2.5
3a	Failures of CFET, assumptions of QFET	4,4
3 b	Meissner's effect, graph and explanation	5,3 1,3
3 c	$H_c = H_0 \left[1 - \left(\frac{T}{T_c}\right)^2 \right]$, substitution, $H_c = 0.0216$	1,3
4 a	phenomenon of superconductivity and discuss qualitatively the BCS theory	2,6
4 b	Define SQUID and explanation of RF squid with diagram.	2,3,3 1,3
4 c	$f(E) = \frac{1}{e^{\left(\frac{E-E_f}{KT}\right)+1}}, \text{ substitution, T=1261.1K}$	1,3
5 a	importance of size & scale and weight and strength in animations	4,4
5 b	general pattern of monte Carlo method and hence determine the value of π .	4,4
5 c	$\lambda = 1, f(k, \lambda) = P(X = K) = \frac{\lambda^{K} e^{-\lambda}}{K!}, P(K=0)=0.36, P(K=1)=0.368,$	2,2
	P(K=2)= 0.184	8
6 a	probability for proton decay	4,4
6 b	Timing in linear motion, slow-in and slow-out	
6 c	Base distance $\frac{Distance \ between \ adjacent \ distances}{2}$, = 0.075, No of frames= 0.5/0.075=7 frames.	2,2

Course In-charge

Module Coordinator

HOD .

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 SECOND INTERNAL TEST QUESTION PAPER 2023-24 ODD SEMESTER

	SET: B			
	ree : B.E. Semester : 1 ich - Stream : CSE, CSD, AI&ML - CSE STREAM Course Type / Code : Integ rse Title : APPLIED PHYSICS FOR CSE -Stream Date : 26/1.	rated/Bl 2/2023	PHYS10)2
	Note: Answer ONE full question from each module.	K6-Cr	eating	
Q	K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating Questions	Mark	CO	K- Leve
No.	Module 3	5		
1(a)	Explain the working of controlled Z – gate mentioning its matrix representation and truth table.	5	CO3	К2
(b)	Given $ \psi\rangle = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$ and $ \phi\rangle = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ Prove that $\langle \psi \phi \rangle = \langle \phi \psi \rangle^*$	5	CO3	КЗ
	OR	5		
2(a)	Explain the CNOT gate and its operation on four different input states.	5	CO3	K2
(b)	Make use of qubits and find the matrix representation of 'X'. A Linear Operator 'X' operates such that $X 0\rangle = 1\rangle$ and $X 1\rangle = 0\rangle$.	5	CO3	кз
	Module 4			
3(a)	Define Fermi energy and explain the variation of fermi factor with temperature and energy.	8	CO4	К2
(b)	Explain DC and AC Josephson effects and mention the applications of superconductivity in quantum computing.	8	CO4	К2
(c)	Make use of fermi factor and calculate the probability of an electron occupying an energy level 0.02eV above the fermi level at 200K and 400K in a material.			К3
	OR	8	CO4	К2
4(a)	Explain DC Squid with the help of a neat sketch.		04	K 2
(b)	Explain Meisner's effect and hence classify superconductors into soft and hard superconductors using M-H graphs.	8	C04	К2
(c)	Make use of critical field equation and find the critical field of lead at 6K that is having a transition temperature of 7.26K, If the initial field at 0K is 50×10^3 Am ⁻¹ .	4	CO4	К3
	Module 5	8	C05	К2
5(a)	Explain timing in Linear motion, Uniform motion, slow in and slow out.		C05 C05	
(b)	Explain the odd rule and odd rule multipliers with a suitable example.			К2
(c)	Make use of odd rule multiplier and calculate the distance between the frames when the base distance is 0.5 cm for the slow –out, (a) #4 and #5 (b) #1 and #7.	4	C05	К3
	OR E. I.	0	CO?	1/2
6(a)	Expalin Jumping and parts of jumping.	8	C05 C05	K2
(b)	Explain the salient features of Normal distribution using bell curves.	8		К2
(c)	Make use of odd rule multiplier, calculate the base distance and the number of frames in sequence when a slowing-in object in an animation has a first frame distance 0.5m and the first slow in frame 0.35m.	4	C05	КЗ

D Reno ke W Name & Signature of Course In charge:

IU

Dr Reuter TH Name & Signature of Module Coordinator:

λı HOD

Principal Selver

SET-B

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 SECOND INTERNAL TEST 2023 – 24 ODD SEMESTER

SCHEME AND SOLUTION

Degree	:	BE	Semester : 1
Branch - stream	:	CSE, CSD, AL&ML	Course Type / Code :INTERGRATED
0		APPLIED PHYSICS FOR CSE	Max Marks : 50

Q.NO.	POINTS	MARKS			
la	Controlled Z gate truth table	2,3			
1 b	$\langle \psi \phi \rangle = (\alpha_1^* \alpha_2^*) {\beta_1 \choose \beta_2} = \beta_1 \alpha_1^* + \beta_2 \alpha_2^*$	2.5			
	$\langle \psi \phi \rangle^* = \beta_1^* \alpha_1 + \beta_2^* \alpha_2$	2.5			
2 a	CNOT gate and truth table	2.5, 2.5			
2 b	Let $X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$, operating on 0) and 1), we find, $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	2.5, 2.5			
3a	Fermi energy, Fermi factor $f(E)$, three cases ; (i) $E \le E_f$ at $T=0K$ and normal temperature	2, 5, 1			
3 b	Josephson effect, Ac and DC effect and application as charge qubit, Phase qubit and Flux qubit.	2,2,2,2			
3 c	RF squid explanation and diagram	6,2			
4 a	Meissner's effect definition with type I and Type II difference	2,6			
4 b	Define SQUID and explanation of RF squid with diagram.	2,3,3			
4 c	$H_c = H_0 \left[1 - \left(\frac{T}{T_c} \right)^2 \right]$, substitution, H_c	1,3			
5 a	importance of timing in Linear motion, Uniform motion, slow in and slow out.	4.4			
5 b	odd rule and odd rule multipliers with a suitable example	2.4.2			
5 c	$\lambda = 1, f(k, \lambda) = P(X = K) = \frac{\lambda^{K} e^{-\lambda}}{K!}, P(K=0)=0.36, P(K=1)=0.368, P(K=2)=0.368, P(K=2)=0$	2.2			
	0.184				
6 a	probability for proton decay	8			
6 b	Timing in linear motion, slow-in and slow-out	4.4			
6 c	Base distance $\frac{Distance \ between \ adjacent \ distances}{2}$, = 0.075, No of frames= 0.5/0.075=7 frames.	2.2			

Course In-charge

Module Coordinator

HOD