

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 FIRST INTERNAL TEST QUESTION PAPER-2023-24 EVEN SEMESTER

USN

Degree

B.E

Semester:

VI A& B

Branch

Electronics & Communication Engg. Course Code:

21EC642 29th MAY 2024

Course Title : Duration

Cryptography 60 Minutes

Date : Max Marks: 20

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Q No.	Question	Mark s	CO mapping	K- Level
	PART-A		mapping	BUVEI
1(a)	Explain the extended Euclid's algorithm for determining the multiplicative of two positive integers. Solve the GCD of (24140,16762)	4	CO1	КЗ
(b)	State the axioms of Field and Solve additive & multiplicative table for $GF(2^2)$ give primitive polynomial as (x^2+x+1)	4	CO1	КЗ
(c)	Construct additive and multiplicative table for Z ₇ and Solve all additive and multiplicative inverse elements	4	CO1	КЗ
	OR			
2(a)	Explain the Euclid's algorithm & find GCD of a number and Solve the multiplicative inverse of 1234 mod 4321	4	CO1	КЗ
(b)	Check whether (X^3+X^2+1) is irreducible and Solve multiplicative invers for (X^3+X^2+1) mod (X^2+X+1)	4	CO1	КЗ
(c)	Construct mod8 additive and multiplicative table and Solve all additive and multiplicative inverse elements.	4	CO1	КЗ
	PART-B	2151		
3(a)	Make use of Symmetrical encryption model and explain it with a neat diagram and define Substitution Technique and Transposition technique.	4	CO2	КЗ
(p)	Make use of Playfair algorithm and solve cipher text for "TECHNOLOGY" with keyword "ATTACK"	4	CO2	КЗ
	OR			
4(a)	Encrypt the plain text MONDAY using Hill cipher with key [JEFH] and Solve inverse of the Key matrix.	4	CO2	КЗ
(b)	Make use of Playfair algorithm and Explain it with an example.	4	CO2	КЗ

Name & Signature of Course In charge:

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 I SESSIONAL TEST QUESTION PAPER 2023-24 ODD SEMESTER SCHEME AND SOLUTION for SET A

Degree: B.E Branch: E&CE

Semester: VI A & B Course Code: 21EC642

4M

2M

2M

4M

4M

Max Marks: 20

Course Title : Cryptography 1a

The Euclidean Algorithm for finding GCD(A,B) is as follows: If A = 0 then GCD(A,B)=B, since the GCD(0,B)=B, and we can stop.

If B = 0 then GCD(A,B)=A, since the GCD(A,0)=A, and we can stop.

Write A in quotient remainder form $(A = B \cdot Q + R)$

Find GCD(B,R) using the Euclidean Algorithm since GCD(A,B) = GCD(B,R)

GCD(24140, 16762) = GCD (16762, 7378) = GCD (7378, 2006) = GCD (2006, 1360) = GCD (1360, 646) = GCD (646, 68) = GCD (68, 34) = GCD(34, 0) = 34

Properties of Field 1b

Satisfies all the properties of group like closure, associative, Identity, Inverse and commutative property and also satisfies properties of Ring like closure, associative, Identity, distributive and also satisfies Inverse property.

Additive & Multiplicative table for $GF(2^2)$ give primitive polynomial as (x^2+x+1) Set elements are (0,1,X,X+1)

Additive inverse of

Elements	Additive Inverse	Multiplicative Inverse
0	0	0
1	1	1
X	X	X+1
X+1	X+1	X

Additive and multiplicative table for Z7

1c

	100	1 10 11 10	100	E-0.1			
Make 1		1000000	3.3	100			
100	2 1 2	5 4	10年2				
100	4 5 6	4 0	OF CHES	100			
1	4 4	- n 1	3 100	100			
1000	G. 2018		13				
100	STREET, S.	7 30 10	1.4	1 4			
SALES OF	C41.752000	and sendicked				ALL STREET	-
	Page 15 Spirit					4	and the same
100	4 3		STATE OF	100		0 E 0	BIDDIES.
-	1 40 7 19	A STATE OF	1.00	1.0%		- BOOK	100
1700	1174373 2	0.000	AS \$55.8	0	41.50	-0-800m	1000
1000	2 4	100	E 580	1-12-1		A 100 mg	1323
	1000	THE REAL PROPERTY.	E 18353	1		3 100,200	23
1000			A	- C - C - C - C		FF27-808-900	010000
1	4 5 8	(D) (C) (C) (C) (C)	Company of the last			1 Pr. British	and the same of th

2a.

The explanation of Euclid's algorithm 1M

	Multiplicative inverse of 1234 mod 4321= 3239 3M	4M
b	Yes (X^3+X^2+1) is irreducible and The multiplicative invers for $(X^3+X+1)^{-1} \mod (X^2+X+1)$ is $[x+1]$ $(X^2+X+1)^{-1} \mod (X^3+X+1) = x^2$	
2e.	mod8 additive and multiplicative	4M
п		
3a.	Symmetrical encryption model	4M
	plannest Energytion ciphuriant Decryption Algorithm Diagram & Explanation 3M	
3ь.	Define for Substitution & Transposition Techniques: 1M PLAY FAIR cipher with the key ATTACK encrypt the message "TECHNOLOGY 4M	4N
4a	K ⁻¹ = 9 2 1 15	41
4b.		41

Signature of Course in-charge Signature of Module Coordinator Signature of HOD ECE

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 FIRST INTERNAL TEST QUESTION PAPER 2023-24 EVEN SEMESTER SET B

	 -117	 	
USN			

Degree

B.E

Semester: VI A& B

Branch

Electronics & Communication Engg.

Course Code: 21EC642

Course Title : Duration

Cryptography **60 Minutes**

Date: 29th MAY 2024 Max Marks: 20

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Q No.	Question	Mark s	CO mapping	K- Level
-	PART-A			
1(a)	Mention all modular arithmetic properties & obtain additive & multiplicative table for Mod5 and Solve all additive & multiplicative inverse for the same	4	CO1	кз
(b)	Solve GCD [a(x),b(x)] for $a(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ and $b(x) = x^4 + x^2 + x + 1$ and write all modular arithmetic properties	4	CO1	КЗ
(c)	Construct additive and multiplicative table for GF(7) and Solve all additive and multiplicative inverse elements	4	CO1	К3
	OR			
2(a)	Solve the multiplicative inverse of $a(x) = x^8 + x^4 + x^3 + x + 1$ and $b(x) = x^7 + x + 1$	4	CO1	КЗ
(b)	Check whether $(X^4+X^3+X^2+1)$ is irreducible and Solve multiplicative invers for (X^3+X+1) mod (X^2+X+1)	4	CO1	КЗ
(c)	Construct Z ₈ additive and multiplicative table and Solve all additive and multiplicative inverse elements.	*4	CO1	КЗ
- 5	PART-B			
3(a)	Make use of Symmetric Crypto system and explain it with a neat diagram and define reducible and irreducible polynomial.	4	CO2	КЗ
(c)	Make use of playfair cipher Encrypt the plain text "ELECTRONICS" with a key INDIA also mention all the rules for encryption.	4	CO2	КЗ
	OR			
4(a)	Encrypt the plain text MONDAY using Hill cipher with key K= 2 3 1 22 and Solve inverse of the Key matrix	4	CO2	. кз
(b)	Make use of Playfair cipher with the key largest encrypt the message "Must see you today"	4	CO2	КЗ

Name & Signature of Course In charge:

Name & Signature of Module Coordinator

Principal

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 I SESSIONAL TEST QUESTION PAPER 2023-24 ODD SEMESTER SCHEME AND SOLUTION for SET 38

Semester: VI A & B Course Code: 21EC642

Degree: B.E.	
Branch: E&CE	
Course Title : Cryptography	

	Branch: E&CE	Max Marks: 20	
	Course Title : Cryptography		4M
a	Mod 5		
	Additive modulo 5	multiplication modulo 5	
	+ 0 1 2 3 4	X 0 1 2 3 4	
	0 0 1 2 3 4	0 0 0 0 0 0	
	1 1 2 3 4 0	1 0 1 2 3 4	
	2 2 3 4 0 1 3 3 4 0 1 2	2 0 2 4 1 3	BILLS I
		3 0 3 1 4 2 1	
	4 4 0 1 2 3	4 0 4 3 2 1	
1b	CCD -		
	GCD a $a(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ and	1 3M	
	$b(x) = x^4 + x^2 + x + 1$		
			4M
	is $x^3 + x^2 + 1$		
	Modular Properties :	1M	1 10
1	(a+b) modn= amodn + bmodn	INI	
	(a-b) modn= amodn - bmodn		
	(a*b) modn= amodn * bmodn		
1c	Additive and multiplicative tab	le for x ³ +x+1	
-			
	000 601 510	051 500 101 110 121	
	* 0 1 ×	and all alex alex alexand	
1	900 0 0 0 0	0 0 0 0 0 0 sel x ² x ² el x ² ex x ² exel	
6	001 1 0 1 x		12
	The second second second	x'ex xe1 1 x'exe1 x'e1 x'e1 x'exe1 x' 1 x	
	222 272	2 + 3 + 1 2	
	1 7 1 1	x x x rest xet x'es	
	110 x'+1 0 x'+1 1	1 x'e1 xe1 x x	
	511 x +x+1 0 x -x+1 x +1	x 1 x ² 4x x ² x*1	
	White St. 1987 W. Lane Swindship Commanders and St. 1987		
			41
	Multiplicative Inverse for a(x)	$y = x^8 + x^4 + x^3 + x + 1$ is	41
2a.	Multiplicative Inverse for a(x) and	$y = x^8 + x^4 + x^3 + x + 1$ is	41
2a.	and	$y = x^8 + x^4 + x^3 + x + 1$ is	41
2a.		$y = x^8 + x^4 + x^3 + x + 1$ is	41
	and $\mathbf{b}(\mathbf{x}) = \mathbf{x}^7 + \mathbf{x} + 1 \text{ is } \mathbf{x}^7$		41
2a. 2b	and $b(x) = x^7 + x + 1$ is x^7 No $(X^4 + X^3 + X^2 + 1)$ is not irred	lucible and	41
	and $b(x) = x^7 + x + 1$ is x^7 No $(X^4 + X^3 + X^2 + 1)$ is not irred	lucible and	41
	and $\mathbf{b}(\mathbf{x}) = \mathbf{x}^7 + \mathbf{x} + 1 \text{ is } \mathbf{x}^7$	lucible and	41

Signature of Course in-charge Signature of Module Coordinator Signature of HOD ECE

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 SECOND INTERNAL TEST QUESTION PAPER 2023-24 EVEN SEMESTER SET A

T.	USN
.E	Comparts TV 10

Degree : B.E Semester : VI A& B

Course Title : Communication Engg. Course Code : 21EC642

Course Title : Cryptography Date : 21EC642

Duration : 60 Minutes Date : 29th June 2024

Max Marks : 20

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating 2 No. Question K-Marks mapping Level PART-A Explain with a neat diagram the operation performed in 1st & 10th round of AES 1(a) CO3 algorithm. K2 State & prove Fermat's theorem and Solve 3990 mod 91 & 3999 mod 10 using it (t 4 CO₃ K3 With a neat diagram explain round operation in DES encryption (c) 4 CO3 K2 With a neat diagram of DES encryption & decryption process and explain the 2(a) 4 CO₃ working principle for the same. K2 Explain Key expansion technique in AES algorithm (b) 4 & Define Euler's theorem and Solve Totient function for 37 & 600 CO₃ K3 Explain the parameters of Feistel structure and design Feistel network for (c) 4 CO₃ encryption & decryption. K2 PART-B Encrypt the plain text 'PAYMOREMONEY' using Hill cipher algorithm and Solve the cipher text. (a) 17 17 15 K3 Given Key K=ZI III ZI CO2 With a neat block diagram explain the Principles of Public-Key Cryptosystems 4 with authentication (b) K3 Solve cipher text and plain text using the RSA algorithm given P=5, Q=11, e=3 CO₄ and encrypt the message M=EC and decrypt the same. Make use of Substitution and Transposition technique definition with an example also define Diffusion and Confusion technique, solve the 4 K3 (a) Encrypt the plain text AUTHENTICATION using Rail fence method & Key CO₂ technique given KEY as 4132 Make use of the concepts of Public key explain Principles of Public-Key Cryptosystems with authentication and secrecy with a neat diagram. 4 CO4 K3 & Explain RSA algorithm

Name & Signature of Course In charge: Name & Signiture of Module Coordinator

HODECE

Principal

Soletit

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 SECOND INTERNAL TEST 2023-24 EVEN SEMESTER SCHEME AND SOLUTION for SET A

Degree

: B. E

Branch

: E&CE

Course Title: Cryptography

Semester: VI A & B Course Code: 21EC642

RSA algorithm given P=5, Q=11, e=3 and encrypt the message M=EC and decrypt the same.

P=5 Q=11 e=3 and M=EC: 42

n=55, Φ=40

Given e=3

de mod40=1 d=27

Encryption C1= Me mod n= 43mod 55=9

C2= Me mod n= 23mod 55=8

Decryption D= $C1^d \mod n = 9^{27} \mod 55=4$

 $C1^d \mod n = 4^{27} \mod 55 = 2$

Def for Substitution and Transposition technique 1M Diffusion and Confusion technique

AUTHENTICATION using Rail fence method & Key technique given KEY as 4132

4M

RAILFENCE: A T E T C T O

UHNIAIN

ATE TCTOUHNIAIN

4 1 3 2 O/P UNANHIIXTTTXAECO

AUTH

ENTI

CATI

ONXX

4a.

Signature of Module Coordinator

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 SECOND INTERNAL TEST QUESTION PAPER 2023-24 EVEN SEMESTER SET B

USN					
5 T. CT. C. Z.	_	-	_	- 0	

egree

B.E

ranch

Semester: VI A& B Electronics & Communication Engg. Course Code: 21EC642

ourse Title : uration

Cryptography 60 Minutes

Date:

29th June 2024

Max Marks: 20

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing

Q No	Question Question	Mark s	CO mapp	K- Leve
	PART-A	8	ing	1 1
1(a)	1) P=3, q=7 2) q=12, P=5	4	соз	К3
(b)	Explain the concept of Substitution byte, Mix column & Shift row operation with neat diagram in AES algorithm	4	CO3	K2
(C)	Illustrate the round operation in DES algorithm & compare DES and AES algorithm	4	CO3	КЗ
	• OR			
2(a)	Define a WORD in AES algorithm & illustrate the working of 'g' function in AES Key expansion algorithm with a neat diagram	4	CO3	К3
(b)	Explain the Feistel encryption and decryption process with a neat	4	CO3	K2
(C)	Define Fermat's little theorem and Solve the value of X given X ¹⁰³ 4 mod 11 and find the remainder for 2 ³⁵ mod7 and 7 ²⁰ mod21	4	CO3	КЗ
	PART-B			
3(a)	List and explain the process used in RSA algorithm for encrypting and decrypting the data & Define Authentication, Digital Signature, Confidentiality	4	CO2	К3
	Encrypt the plain text 'CIPHER' using Hill cipher algorithm and Solve the cipher text. 6 124 1 15 17 15 15 17 15 17 15 18	4	CO4	К3
_	OR			_
l(a)	Solve the encrypted data given the plain text ELECTRONICS using Rail fence method & Key technique given KEY as 4132. & Define Monoalphabetic cipher & Polyalphabetic cipher	4	CO2	К3
1	With a neat block diagram explain the Principles of Public-Key Cryptosystems with confidentiality			. 1
1	& Solve cipher text given plain text as KS using the RSA algorithm given P=3, Q=11, e=7	4	CO4	К3
		11.7	1	

Name & Signature of Course In charge:

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 SECOND INTERNAL TEST 2023-24 EVEN SEMESTER SCHEME AND SOLUTION for SET B

Degree

: B. E

Branch : E&CE

Course Title: Cryptography

Semester: VI A & B Course Code: 21EC642

Signature of Module Coordinator

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 THIRD INTERNAL TEST QUESTION PAPER 2023-24 EVEN SEMESTER

C	Tr'	т.	A
2	10	1.	13

Degree

B. E.,

Branch

Duration

E&CE

Course Title

Cryptography

60 Minutes

USN Semester

: VI

Course Code: 21EC642

: 31st July 2024

: 20 Max Marks

Note: Answer ONE full question from each part,

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Q No.	Questions	Marks	со	K- Level
	PART-A			
1(a)	Explain Generalized Geffe generator & Alternating Stop& Gogenerator with a neat diagram.	4	CO5	K2
(b)	Explain the application & working of A5 generator and Thresholdgenerator.		CO5	K2
(c)	Explain Linear feedback shift register with a neatdiagram.		CO5	K2
	OR			
2(a)	Explain Linear Congruential Generator with an example.		CO5	K2
(b)	Explain Gifford generator & Geffe generator.		CO5	K2
(c)	Explain Bilateral Stop and Go generator and Jennings Generator	A		K2
(8)(8)	PART -B		-	
3(a)	7 (0.10) P (0.71) 1 (0.15) and		CO4	КЗ
(b)	Make use of Diffie Hellman's Key exchange algorithm and solve Public Key of user A & B for E ₁₁ (1,6), G(1,3) and private Key of User A is 2 and B is 1 and explain ECC.	4	CO4	K3
	OR		-	
4(a)	Make use of ECC algorithm encrypt the data given E ₁₁ (1,1), G(1,3),n=20.Assume secret key between the user as 1.Solve all the private key and Public key.		CO4	K3
(b)	Solve Shared key if Public Key for E ₁₁ (1,1), G (2,2) and private Key of User A is 1 and B is 2 and Explain ECC encryption algorithm.	4	CO4	K3
	No.		1	

Name & Signature of Course In charge

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 THIRD INTERNAL TEST 2023-24 EVEN SEMESTER SCHEME AND SOLUTION for SET A

Degree

: B. E

Branch

: E&CE

Semester: VI A & B

Course Code: 21EC642

Cours	se Title : Cryptography	Marks
No.	Points	4M
a Ger	 Instead of choosing between two LFSRs, this scheme chooses between LFSRs, as long as k is a power of 2. More complex than Geffe generator and correlation attack is possible. Correlation attack is outputs of individual LFSRs can be combined keystream and attacked using linear algebra. Alternate Stop and Go Generator. It uses three LFSRs of different length.LFSR-2 is clocked when the output of LFSR-1 is 1; LFSR-3 is clocked when the output of LFSR-1 is 0. The output of the generator is the XOR of LFSR-2 and LFSR-3. This generator has a length period and large linear complexity. The correlation attack found against LFSR-1, but it does not substant weaken the generator. There have been other attempts at keystream generators along these lines. 	ne long
1b	 A5consist of 3 LFSRs; register lengths are 19, 22 and 23; All the feedback polynomials are sparse. The output is the XOR of the three LFSRs. A5 uses variable control clock. Each register is clocked based on it middle bit, XORed with the inverse threshold function of the mid of all three registers. usually two of the LFS of clock in each round. The basic ideas behind A5 are good. It is very efficient. It passes all non statistical tests; it's only known weakness is that it's registers are short enough to make exhaustive feasible. Variants of A5 with the longer shift registers and denser feedback polynomials should be secure. 	d.

Signature of Module Coordinator

K.S. INSTITUTE OF TECHNOLOGY, BENGALURU - 560109 THIRD INTERNAL TEST QUESTION PAPER 2023-24 EVEN SEMESTER

A COL	***		-
	100	Г:	14
10	1.4		.,

Degree

Course Title

Duration

B. E.,

Branch

E&CE

Cryptography 60 Minutes

USN Semester

: VI

Course Code: 21EC642

: 31st July 2024

Max Marks : 20

Note: Answer ONE full question from each part.

K-Levels: K1-Remebering, K2-Understanding, K3-Applying, K4-Analyzing, K5-Evaluating, K6-Creating

Q No.	Questions	Marks	со	K- Level
	PART-A			
1(a)	Make use of Linear Feedback shift register and explain the working of given $g(x)=1+x^2+x^3$ and find the period & Key generated. Consider initial key value as 1,0,0		CO5	КЗ
(b)	cplain the concept of Generalized Geffe generator with an example and finelinearity complex and correlation attack.		CO5	K2
(c)	Explain Beth Piper Stop & Go generator & Self-Decimated Generators with a neat diagram.		CO5	К2
	OR			
2(a) '	Make use of Linear Feedback shift register and explain the working of given g(x)=1+x+x ³ and solve the period & Key generated. Consider initial key value as 1,0 0		CO5	КЗ
(b)	Explain Additive Generators and FISH additive generator.		CO5	K2
(c)	Explain NANOTEQ and RAMBUTAN		CO5	K2
	PART –B			
3(a)	For the given Elliptical equation Y ² =X ³ +2X+8 in z ₁₁ field if the given G(2,8). Solve public key of user A and B .given n _A =1,n _B =2, plain text (2,6),K=1.		CO4	. К3
(b)	Make use of an Elliptic Curve Arithmetic on the curve of E ₂₃ (1,1),p=(3,10)q=(9,7), Solve 2P+Q and explain ECC.	4	CO4	КЗ
	OR			
4(a)	Solve P+Q and 2P,2Q .given P=(2,7) & Q=(4,10) for GF(7).		C04	КЗ
(b)	Solve cipher text for message(1,6) given E ₂₃ (1,0) .consider n=50,K=1,G(2,8).solve Private and Public key for user A and B G(4,2) and private Key of User A is 1 and B is 2 and Explain ECC encryption algorithm.	4	CO4	КЗ

Name & Signature of Course In charge

K.S. INSTITUTE OF TECHNOLOGY, BANGALORE - 560109 THIRD INTERNAL TEST 2023-24 EVEN SEMESTER SCHEME AND SOLUTION for SET B

Degree

: B. E

Branch

: E&CE

Course Title: Cryptography

Semester: VI A & B

Course Code: 21EC642

Q No.	Points	Marks
1 a	fow = x = x = x = x = x = x = x = x = x =	4M
1b	Connected Geffe Generator Linear Complexity Instead of choosing between two LFSRs, this scheme chooses between k LFSRs, as long as k is a power of 2. An LFSR is said to generate a sequence of the LFSR is s. An LFSR is said to generate a finite sequence of the LFSR is s. An LFSR is said to generate a finite sequence of the LFSR is some initial state for which the output sequence of the LFSR has a as its first n terms. • Definition: Generalized Geffe Generator Instead of choosing between two LFSRs, as long as k is a power of 2. Where complex than Geffe generator and correlation attack is possible.	4M
	The snear complexity of an infinite binary sequence s, denoted L(s). • Correlation attack is outputs of individual • LFSRs can be combined keystream and • The LFSR generates s, then L(s) = 0 • otherwise, L(s) is the tenth of the shortest LFSR that generates a. Correlation Attack: Cryptographers try to get a high linear complexity by combining the output of several output sequences in some nonlinear manner. The danger is that one or more of the internal output sequences often just outputs of individual LFSRs can be correlated with the combined keystream and attacked using linear algebra. This is called a correlation attack.	
1c	Self-Decimated Generators Beth Piper Stop and Go Generator • It Control their own clock. • It uses the output of one LFSR to control the clock of another LFSR.	4M
	The clock input of LFSR-2 is controlled by the output of LFSR-1, So that LFSR -2 can change its state at time 't' only if the putput of LFSR-1 clocked 'k' times. When the output of the LFSR is 1, the LFSR is clocked 'k' times. The linear complexity of the generator is not yet proved in general case.	

-			
3a.		Δ = 5	4M
		2 3 52- 2p-2p	
	> na=1	=> 52-2-2 => 25-4 = 21 mod 11	
	Pn = nA G => 1 (2,8)= (2,8)	NB € 10	
	$n_8 = 2$ $p_8 = n_8 = 2 (2,8) = (2,8) + (2,8)$	4= 0(x-2)-40=)2(2-10)-8	
	Para a second	J (*p	
	$\Delta = \frac{3(2)^2 + 2}{2(3)} \Rightarrow \frac{3(4) + 2}{16} \Rightarrow \frac{12 + 2}{16}$	a) -us mod 11	
	A DA modil + Fx81modu	Va 3	
	8	Pa =(0,7)	
	e[cs cy]		
	Cy = Pm + kfg. 3 (a,c) + 1(\$+4+1(10,5) = 0.6)+(11,3)		
	5 (a, b) + 1/2+2 1 (10, 5) 5 (2) 5 (2) 5 (2) 5 (2) 5 (3) 5 (4) 5 (S 29	
	26 3 73-xb-x4 3 23- 8-10 0 Ad-12 0 23-moze		
	The state of the s		
	45 - 7 (x+-x)-46 = +(2-2)-6 +3-16-4		
	0 -20 mod 11 Cy = Pa + KPg		
	c [c, (4,27)		
	cx ⇒ kc ≥ ((2,5) c= ((2,2) (4,15)		
	C= [(X,Y) +12)		
).	$\Delta_{2p} = \frac{3(3)^2 + 1}{3(2)} \Rightarrow \frac{3(9) + 1}{80} \Rightarrow \frac{39}{80}$		
	20 20 20		4M
	2 5x80 mod23	x2p => 62-3-3=> 36-6=> 30 mod 23	
		371	
	4 ^t mod ² ³	92p => 6(3-9)-10=>-26-10=> 8 mod	
	A = 6	82p=121	i
	120 -	02P -127	
	Dep+9, =) (7,12)+(9,7)	*	
	Δ = 12 = 5 = 5m	od 2.3	
	9-7 2		
		ų	*
	3-5x12mod 23 3-60 mod 23		
	= -60 mod 23	(8)	
	[Ang 39]		=1
			4M.
	Δap ⇒ (a, *)+(s, *)	SWEOT	
	$\Delta = \frac{10-7}{4-2} \ge \frac{3}{2} \mod \frac{4}{7}$ $\Delta = \frac{3(1)^2+1}{4(17)}$	€ 3(4)+1 € 13 mod €	
	3) 12 mod 9 = 5 = 5 6 mod 9 = 5		
	[A=5] [A=0]		
	162.130	*. *	
	1	•	1.00

	$\frac{A_2q_1}{a_1(0)} = \frac{3(16)+1}{20} \Rightarrow \frac{3(16)+1}{20} \Rightarrow \frac{49}{20} \mod 3$ $\frac{A_2q_1}{a_2} = \frac{3(16)+1}{20} \Rightarrow $	and the
4b.	$\begin{array}{llllllllllllllllllllllllllllllllllll$	4M
	38 13 mod 23 14 mod 23 14 3 08 Y=11 PA = (14,1)	

Signature of Module Coordinator