Course Title:	Applied Physics for ME Stream		
Course Code:	22PHYM12/22	CIE Marks	50
Course Type	Integrated	SEE Marks	50
(Theory/Practical/Integrated)	Integrated	Total Marks	100
Teaching Hours/Week (L:T:P: S)	2:2:2:0	Exam Hours	03
Total Hours of Pedagogy	40 hours Theory + 10-12 Lab slots	Credits	04

Course objectives

- To understand the types of oscillation, shock waves & its generation, and applications.
- To Study the elastic properties of materials and failures of engineering materials
- To understand the fundamentals of thermoelectric materials and devices and their application.
- To understand the Concepts in Low temperature phenomena and generation of low temperature.
- To study the various relevant material characterization techniques.

Teaching-Learning Process

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching –Learning more effective

- 1. Flipped Class
- 2. Chalk and Talk
- 3. Blended Mode of Learning
- 4. Simulations, Interactive Simulations and Animations
- 5. NPTEL and Other Videos for theory topics
- 6. Smart Class Room
- 7. Lab Experiment Videos

Module-1 (8 Hours)

Module -I: Oscillations and Shock waves:

Oscillations: Simple Harmonic motion (SHM), Differential equation for SHM (No derivation), Sprigs: Stiffness Factor and its Physical Significance, Series and Parallel combination of springs (Derivation), Types of Springs and their applications. Theory of Damped oscillations (Qualitative), Types of Damping (Graphical Approach). Engineering applications of Damped oscillations, Theory of Forced oscillations (Qualitative), Resonance, Sharpness of resonance. Numerical Problems.

Shock waves: Mach number and Mach Angle, Mach Regimes, Definition and Characteristics of Shock waves, Construction and working of Reddy Shock tube, Applications of Shock Waves, Numerical problems.

Pre-requisites: Basics of Oscillations

Self-learning: Simple Harmonic motion, Differential equation for SHM

Module-2 (8 Hours)

Elasticity

Stress-Strain Curve, Stress hardening and softening. Elastic Moduli, Poisson's ratio, Relation between Y, n and σ (with derivation), mention relation between K, Y and σ , limiting values of Poisson's ratio. Beams, Bending moment and derivation of expression, Cantilever and I section girder and their Engineering Applications, Elastic materials (qualitative). Failures of engineering materials - Ductile fracture, Brittle fracture, Stress concentration, Fatigue and factors affecting fatigue (only qualitative explanation), Numerical problems.

Pre requisites: Elasticity, Stress & Strain

Self-learning: Stress-Strain Curve

Module-3 (8 Hours)

Thermoelectric materials and devices:

Thermo emf and thermo current, Seeback effect, Peltier effect, Seeback and Peltier coefficients, figure of merit (Mention Expression), laws of thermoelectricity. Expression for thermo emf in terms of T_1 and T_2 , Thermo couples, thermopile, Construction and Working of Thermoelectric generators (TEG) and Thermoelectric coolers (TEC), low, mid and high temperature thermoelectric materials, Applications: Exhaust of Automobiles, Refrigerator, Space Program (RTG), Numerical Problems

Pre requisites: Basics of Electrical conductivity Self-learning: Thermo emf and thermo current

Module-4 (8 Hours)

Cryogenics:

Production of low temperature - Joule Thomson effect (Derivation with 3 cases), Porous plug experiment with theory, Thermodynamical analysis of Joule Thomson effect, Liquefaction of Oxygen by cascade process, Lindey's air liquefier, Liquefaction of Helium and its properties, Platinum Resistance Thermometer, Applications of Cryogenics, in Aerospace, Tribology and Food processing(qualitative), Numerical Problems

Pre requisites: Basics of Heat and Thermodynamics Self-learning: Application of Cryogenics in Food Processing

Module-5 (8 Hours)

Material Characterization and Instrumentation Techniques:

Introduction to nano materials: Nanomaterial and nanocomposites. Principle, construction and working of X-ray Diffractometer, Crystallite size determination by Scherrer equation, Atomic Force Microscopy (AFM): Principle, construction, working and applications, X-ray photoelectron spectroscopy(XPS), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Numerical Problems.

Pre requisites: Quantum Mechanics

Self-learning: Crystallites

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO1	Elucidate the concepts in oscillations,	waves, elasticity and material failures
-----	---	---

- CO2 **Discuss** the fundamentals of Thermoelectric materials and their application
- CO3 **Summarize** the low temperature phenomena and generation of low temperature
- CO4 **Explain** the various material characterization techniques
- CO5 **Practice** working in groups to conduct experiments in physics and **perform** precise and honest measurements.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

The CIE marks for the theory component of the IC shall be 30 marks and for the laboratory component 20 Marks.

CIE for the theory component of the IC

- Three Tests each of 20 Marks; after the completion of the syllabus of 35-40%, 65-70%, and 90-100% respectively.
- Two Assignments/two quizzes/ seminars/one field survey and report presentation/one-course project totalling 20 marks.

Total Marks scored (test + assignments) out of 80 shall be scaled down to 30 marks

CIE for the practical component of the IC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The **15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test (duration 03 hours) at the end of the 15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IC/IPCC for **20 marks**.

• The minimum marks to be secured in CIE to appear for SEE shall be 12 (40% of maximum marks) in the theory component and 08 (40% of maximum marks) in the practical component. The laboratory component of the

IC/IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 05 questions is to be set from the practical component of IC/IPCC, the total marks of all questions should not be more than 25 marks.

The theory component of the IC shall be for both CIE and SEE.

Semester End Examination(SEE):

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- The question paper shall be set for 100 marks. The medium of the question paper shall be English/Kannada). The duration of SEE is 03 hours.
- The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module. The student has to answer for 100 marks and **marks scored out of 100 shall be proportionally reduced to 50 marks**.

There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 subquestions), **should have a mix of topics** under that module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1. Vibrations and Waves (MIT introductory Physics Series), A P French, CBS, 2003 Edition
- 2. Timoshenko, S. and Goodier J.N. "Theory of Elasticity", 2nd Edition, McGraw Hill Book Co, 2001.
- 3. Sadhu Singh, "Theory of Elasticity", Khanna Publishers, 1997
- 4. Mechanical Properties of Engineered Materials by Wole Soboyejo, CRC Press; 1st edition, 2002
- 5. Heat & Thermodynamics and Statistical Physics(XVIII-Edition) Singhal, Agarwal & Satyaprakash Pragati Prakashan, Meerut, 2006. 4
- 6. Heat and Thermodynamics (I-Edition) D.S. Mathur S. Chand & Company Ltd., New-Delhi, 1991
- 7. Heat and Thermodynamics, Brijlal & Subramanyam, S. Chand & Company Ltd., New-Delhi.
- 8. Physics of Cryogenics by Bahman Zohuri, Elsevier, 2018
- 9. Materials Characterization Techniques-Sam Zhang, Lin Li, Ashok Kumar, CRC Press, First Edition, 2008.
- 10. Characterization of Materials- Mitra P.K . Prentice Hall India Learning Private Limited.
- 11. Nanoscience and Nanotechnology: Fundamentals to Frontiers M.S. Ramachandra Rao & Shubra Singh, Wiley India Pvt Ltd.
- 12. Nano Composite Materials-Synthesis, Properties and Applications, J. Parameswaranpillai, N. Hameed, T. Kurian, Y. Yu, CRC Press.
- 13. Shock waves made simple by Chintoo S Kumar, K Takayama and K P J Reddy: Willey India Pvt. Ltd, Delhi,2014

Web links and Video Lectures (e-Resources):

Simple Harmonic motion: https://www.youtube.com/watch?v=k2FvSzWeVxQ Shock waves: https://physics.info/shock/ Shock waves and its applications: https://www.youtube.com/watch?v=tz_3M3v3kxk Stress- strain curves: https://web.mit.edu/course/3/3.11/www/modules/ss.pdf Stress curves: https://www.youtube.com/watch?v=f08Y39UiC-o Fracture in materials: https://www.youtube.com/watch?v=x47nky4MbK8 Thermoelecticity:https://www.youtube.com/watch?v=2w7NBuu5w9c&list=PLtkeUZItwHK5y6qy1GFxa4Z4Rc mzUaaz6 Thermoelectric generator and coolers: https://www.youtube.com/watch?v=NruYdb31xk8 Cryogenics: https://cevgroup.org/cryogenics-basics-applications/ Liquefaction of gases: https://www.youtube.com/watch?v=aMelwOsGpIs Virtual lab:https://www.ylab.co.in/participating-institute-amrita-vishwa-vidyapeetham Material characterization :https://onlinecourses.nptel.ac.in/noc20_mm14/preview https://www.encyclopedia.com/science-and-technology/physics/physics/cryogenics https://www.usna.edu/NAOE/_files/documents/Courses/EN380/Course_Notes/Ch10_Deformation.pdf

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

http://nptel.ac.in https://swayam.gov.in https://virtuallabs.merlot.org/vl_physics.html https://phet.colorado.edu https://www.myphysicslab.com

Laboratory Component:

Any Ten Experiments have to be completed from the list of experiments

Note: The experiments have to be classified into

a) Exercise

b) Demonstration

c) Structured Inquiry

d) Open Ended

Based on the convenience classify the following experiments into above categories. Select at least one simulation /spreadsheet activity.

<u>List of Experiments</u>

- 1. Determination of Young's modulus of the material of the given bar Uniform Bending.
- 2. Determination of Rigidity modulus of the Material of the wire using Torsional Pendulum.
- 3. Study of Forced Mechanical Oscillations and Resonance.
- 4. Study of the frequency response of Series & Parallel LCR circuits.
- 5. Determination of Fermi Energy of the given Conductor.
- 6. Determination of Resistivity by Four Probe Method.
- 7. Determination of effective spring constant of the given springs in series and parallel combinations.
- 8. Determination of Young's modulus of the material of the given bar Single Cantilever.
- 9. Determination of the Moment of Inertia of the given irregular body using torsional pendulum.
- 10. Determination of Wavelength of Laser using Diffraction Grating.
- 11. Determination of Acceptance angle and Numerical Aperture of the given Optical Fiber.
- 12. Determination of the Radius of Curvature of the given Plano Convex Lens by setting Newton's Rings.
- 13. Step Interactive Physical Simulations.
- 14. Study of motion using spread Sheets
- 15. Application of Statistics using Spread Sheets.
- 16. PHET Interactive Simulations :(<u>https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html,prototype</u>)

COs and POs Mapping (Individual teacher has to fill up)												
COs						P	Os					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	-	-	2	-	-	-	-	-	-	2
CO2	3	2	-	-	-	-	-	-	-	-	-	2
CO3	3	2	-	-	-	-	-	-	-	-	-	2
CO4	3	2	-	-	-	-	-	-	-	-	-	2
CO5	3	2	1	-	2	-	-	3	3	-	-	2
	Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped,											

Note : The CO-PO mapping values are indicative. The course coordinator can alter the mapping using **Competency and Performance Indicators** mentioned in the **AICTE Exam reforms**

Course Title:	Applied Physics for EEE Stream						
Course Code:	22PHYE12/22	CIE Marks	50				
Course Type (Theory/Practical/Integrated)	Integrated	SEE Marks	50				
Course Type (Theory/Fractical/Integrated)	Integrated	Total Marks	100				
Teaching Hours/Week (L:T:P: S)	2:2:2:0	Exam Hours	03				
Total Hours of Pedagogy	40 hours+10-12 Lab Slots	Credits	04				
Course objectives							
• To study the principles of quantum m	ochanica						

- To study the principles of quantum mechanics
- To understand the properties of dielectrics and superconductors
- To study the essentials of photonics for engineering applications.
- To understand fundamentals of vector calculus and EM waves.
- To study the knowledge about semiconductors and devices.

Teaching-Learning Process

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching –Learning more effective

- 1. Flipped Class
- 2. Chalk and Talk
- 3. Blended Mode of Learning
- 4. Simulations, Interactive Simulations and Animations
- 5. NPTEL and Other Videos for theory topics
- 6. Smart Class Room
- 7. Lab Experiment Videos

Module-1 (08 Hours)

Quantum Mechanics:

de Broglie Hypothesis and Matter Waves, de Broglie wavelength and derivation of expression by analogy, Phase Velocity and Group Velocity, Heisenberg's Uncertainty Principle and its application (Non existence of electron inside the nucleus-Non Relativistic), Principle of Complementarity, Wave Function, Time independent Schrödinger wave equation, Physical Significance of a wave function and Born Interpretation, Expectation value, Eigen functions and Eigen Values, Particle inside one dimensional infinite potential well, Waveforms and Probabilities. Numerical Problems

Pre-requisite: Wave–Particle dualism

Self-learning: de Broglie Hypothesis

Module-2 (08 hours)

Electrical Properties of Solids:

Conductors:

Quantum Free Electron Theory of Metals: Assumptions, Fermi-energy, Fermi factor, Variation of Fermi Factor with Temperature and Energy, Mention of expression for electrical conductivity.

Dielectric Properties: Polar and non-polar dielectrics, Electrical Polarization Mechanisms, internal fields in solids, Clausius-Mossotti equation (Derivation), Solid, Liquid and Gaseous dielectrics. Application of dielectrics in transformers, Capacitors, Electrical Insulation. Numerical Problems.

Superconductivity:

Introduction to Superconductors, Temperature dependence of resistivity, Meissner Effect, Critical Field, Temperature dependence of Critical field, Types of Super Conductors, BCS theory (Qualitative), High Temperature superconductivity, SQUID, MAGLEV, Numerical problems.

Pre-requisites: Classical Free Electron Theory Self-learning: Dielectrics Basics

Module-3 (08 hours)

Lasers and Optical Fibers:

Lasers: Characteristics of LASER, Interaction of radiation with matter, Expression for Energy Density and its significance. Requisites of a Laser System. Conditions for Laser action. Principle, Construction and Working of Carbon Dioxide Laser. Application of Lasers in Defense (Laser range finder) and Laser Printing. Numerical

Problems

Optical Fibers: Total Internal Reflection, Propagation mechanism, Angle of Acceptance, Numerical Aperture, Fractional Index Change, Modes of Propagation, Number of Modes and V Number, Types of Optical Fibers. Attenuation and Mention of Expression for Attenuation coefficient, Attenuation Spectrum of an Optical Fiber with Optical Windows. Discussion of Block Diagram of Point to Point Communication, Intensity based Fiber Optic Displacement Sensor, Merits and Demerits, Numerical problems.

Pre-requisite: Properties of light Self-learning: Total Internal Reflection

Module-4 (08 hours)

Maxwell's Equations and EM waves:

Maxwell's Equations: Fundamentals of Vector Calculus. Divergence and Curl of Electric field and Magnetic field (static), Gauss' divergence theorem and Stoke's theorem. Description of laws of Electrostatics, Magnetism, Faraday's laws of EMI, Current Density, Equation of Continuity, Displacement Current (with derivation), Maxwell's equations in vacuum, Numerical Problems

EM Waves: The wave equation in differential form in free space (Derivation of the equation using Maxwell's equations), Plane Electromagnetic Waves in vacuum, their transverse nature.

Pre-requisite: Electricity & Magnetism

Self-learning: Fundamentals of vector calculus.

Module-5 (08 hours)

Semiconductors and Devices:

Fermi level in Intrinsic & Extrinsic Semiconductor, Expression for concentration of electrons in conduction band & holes concentration in valance band (only mention the expression), Relation between Fermi energy & Energy gap in intrinsic semiconductors(derivation), Law of mass action, Electrical conductivity of a semiconductor (derivation), Hall effect, Expression for Hall coefficient (derivation) and its application. Photo-diode and Power responsivity, Construction and working of Semiconducting Laser, Four probe method to determine resistivity, Phototransistor, Numerical problems.

Pre-requisite: Basics of Semiconductors

Self-learning: Fermi level in Intrinsic & Extrinsic Semiconductor

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO1	Describe the fundamental principles of the Quantum Mechanics and the essentials of Photonics.
CO2	Elucidate the concepts of conductors, dielectrics and superconductivity
CO3	Discuss the fundamentals of vector calculus and their applications in Maxwell's Equations and EM Waves.
CO4	Summarize the properties of semiconductors and the working principles of semiconductor devices.
CO5	Practice working in groups to conduct experiments in physics and Perform precise and honest measurements.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

The CIE marks for the theory component of the IC shall be 30 marks and for the laboratory component 20 Marks.

CIE for the theory component of the IC

- Three Tests each of 20 Marks; after the completion of the syllabus of 35-40%, 65-70%, and 90-100% respectively.
- Two Assignments/two quizzes/ seminars/one field survey and report presentation/one-course project totalling 20 marks.

26.10.2022

Total Marks scored (test + assignments) out of 80 shall be scaled down to **30 marks CIE for the practical component of the IC**

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The **15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test (**duration 03 hours**) at the end of the 15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to **05 marks**.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IC/IPCC for **20 marks**.

• The minimum marks to be secured in CIE to appear for SEE shall be 12 (40% of maximum marks) in the theory component and 08 (40% of maximum marks) in the practical component. The laboratory component of the IC/IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 05 questions is to be set from the practical component of IC/IPCC, the total marks of all questions should not be more than 25 marks.

The theory component of the IC shall be for both CIE and SEE.

Semester End Examination(SEE):

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (duration 03 hours)

- The question paper shall be set for 100 marks. The medium of the question paper shall be English/Kannada). The duration of SEE is 03 hours.
- The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module. The student has to answer for 100 marks and **marks scored out of 100 shall be proportionally reduced to 50 marks**.

There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 subquestions), **should have a mix of topics** under that module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1. A Textbook of Engineering Physics- M.N. Avadhanulu and P.G. Kshirsagar, 10th revised Ed, S. Chand. & Company Ltd, New Delhi.
- 2. An Introduction to Lasers theory and applications by M.N. Avadhanulu and P.S. Hemne revised Edition 2012. S. Chand and Company Ltd -New Delhi.
- 3. Engineering Physics-Gaur and Gupta-Dhanpat Rai Publications-2017.
- 4. Concepts of Modern Physics-Arthur Beiser: 6th Ed; Tata McGraw Hill Edu Pvt Ltd- New Delhi 2006.
- 5. Fundamentals of Fibre Optics in Telecommunication & Sensor Systems, B.P. Pal, New Age International Publishers.
- 6. Introduction to Electrodynamics, David Griffith, 4th Edition, Cambridge University Press 2017.
- 7. Lasers and Non Linear Optics B.B. Laud, 3rd Ed, New Age International Publishers 2011.
- 8. LASERS Principles, Types and Applications by K.R. Nambiar-New Age International Publishers.
- 9. Solid State Physics-S O Pillai, 8th Ed- New Age International Publishers-2018.

Web links and Video Lectures (e-Resources):

Laser:https://www.britannica.com/technology/laser,k Laser:https://nptel.ac.in/courses/115/102/115102124/ Quantum mechanics:https://nptel.ac.in/courses/115/104/115104096/ Physics:http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html Numerical Aperture of fiber:https://bop-iitk.vlabs.ac.in/exp/numerical-aperture-measurement

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

http://nptel.ac.in https://swayam.gov.in https://www.vlab.co.in/participating-institute-amrita-vishwa-vidyapeetham https://vlab.amrita.edu/index.php?sub=1&brch=189&sim=343&cnt=1 https://virtuallabs.merlot.org/vl_physics.html https://phet.colorado.edu https://www.myphysicslab.com

Laboratory Component:

Any Ten Experiments have to be completed from the list of experiments

Note: The experiments have to be classified into

a) Exercise

b) Demonstration

c) Structured Inquiry

d) Open Ended

Based on the convenience classify the following experiments into above categories selecting at least three experiments for each type. Select at least one simulation/spreadsheet activity.

List of Experiments

- 1. Determination of wavelength of LASER using Diffraction Grating.
- 2. Determination of acceptance angle and numerical aperture of the given Optical Fiber.
- 3. Determination of Magnetic Flux Density at any point along the axis of a circular coil.
- 4. Determination of resistivity of a semiconductor by Four Probe Method
- 5. Study the I-V Characteristics of the Given Bipolar Junction Transistor.
- 6. Determination of dielectric constant of the material of capacitor by Charging and Discharging method.
- 7. Study the Characteristics of a Photo-Diode and to determine the power responsivity / Verification of Inverse Square Law of Intensity of Light.
- 8. Study the frequency response of Series & Parallel LCR circuits.
- 9. Determination of Plank's Constant using LEDs.
- 10. Determination of Fermi Energy of Copper.
- 11. Identification of circuit elements in a Black Box and determination of values of the components.
- 12. Determination of Energy gap of the given Semiconductor.
- 13. Step Interactive Physical Simulations.
- 14. Study of motion using spread Sheets
- 15. Study of Application of Statistics using spread sheets
- 16. PHET Interactive

Simulations(https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html,prototype)

COs and	COs and POs Mapping (Individual teacher has to fill up)											
COs		POs										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	-					-	-	-	-	2
CO2	3	2	-	-	-	-	-	-	-	-	-	2
CO3	3	2	-	-	-	-	-	-	-	-	-	2
CO4	3	2	-	-	1	-	-	-	-	-	-	2
CO5	3	2	1	-	2	-	-	3	3	-	-	2
		Level 3-	Highly N	Mapped,	Level 2-N	Moderate	ely Mapp	ed, Level	1-Low M	Iapped		

Note : The CO-PO mapping values are indicative. The course coordinator can alter the mapping using **Competency and Performance Indicators** mentioned in the **AICTE Exam reforms.**

Course Title:	Applied Physics for CSE Stream		
Course Code:	22PHYS12/22	CIE Marks	50
Course Type	Integrated	SEE Marks	50
(Theory/Practical/Integrated)	Integrated	Total Marks	100
Teaching Hours/Week (L:T:P: S)	2:2:2:0	Exam Hours	03
Total Hours of Pedagogy	40 hours Theory + 10-12 Lab slots	Credits	04

Course objectives

- To study the essentials of photonics and its application in computer science.
- To study the principles of quantum mechanics and its application in quantum computing.
- To study the electrical properties of materials
- To study the essentials of physics for computational aspects like design and data analysis.

Teaching-Learning Process

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching –Learning more effective

- 1. Flipped Class
- 2. Chalk and Talk
- 3. Blended Mode of Teaching and Learning
- 4. Simulations, Interactive Simulations and Animations
- 5. NPTEL and Other Videos for theory topics
- 6. Smart Class Room
- 7. Lab Experiment Videos

Module-1 (8 Hours)

Laser and Optical Fibers:

LASER: Characteristic properties of a LASER beam, Interaction of Radiation with Matter, Einstein's A and B Coefficients and Expression for Energy Density (Derivation), Laser Action, Population Inversion, Metastable State, Requisites of a laser system, Semiconductor Diode Laser, Applications: Bar code scanner, Laser Printer, Laser Cooling(Qualitative), Numerical Problems.

Optical Fiber: Principle and Structure, Propagation of Light, Acceptance angle and Numerical Aperture (NA), Derivation of Expression for NA, Modes of Propagation, RI Profile, Classification of Optical Fibers, Attenuation and Fiber Losses, Applications: Fiber Optic networking, Fiber Optic Communication. Numerical Problems

Pre requisite: Properties of light Self-learning: Total Internal Reflection

Module-2 (8 Hours)

Quantum Mechanics:

de Broglie Hypothesis and Matter Waves, de Broglie wavelength and derivation of expression by analogy, Phase Velocity and Group Velocity, Heisenberg's Uncertainty Principle and its application (Non existence of electron inside the nucleus - Non Relativistic), Principle of Complementarity, Wave Function, Time independent Schrödinger wave equation (Derivation), Physical Significance of a wave function and Born Interpretation, Expectation value, Eigen functions and Eigen Values, Particle inside one dimensional infinite potential well, Quantization of Energy States, Waveforms and Probabilities. Numerical Problems.

Pre requisite: Wave-Particle dualism

Self-learning: de Broglie Hypothesis

Module-3 (8 Hours)

Quantum Computing:

Principles of Quantum Information & Quantum Computing:

Introduction to Quantum Computing, Moore's law & its end, Differences between Classical & Quantum computing. Concept of qubit and its properties. Representation of qubit by Bloch sphere. Single and Two qubits. Extension to N qubits.

Dirac representation and matrix operations:

Matrix representation of 0 and 1 States, Identity Operator I, Applying I to $|0\rangle$ and $|1\rangle$ states, Pauli Matrices and its

operations on $|0\rangle$ and $|1\rangle$ states, Explanation of i) Conjugate of a matrix and ii) Transpose of a matrix. Unitary matrix U, Examples: Row and Column Matrices and their multiplication (Inner Product), Probability, and Quantum Superposition, normalization rule. Orthogonality, Orthonormality. Numerical Problems

Quantum Gates:

Single Qubit Gates: Quantum Not Gate, Pauli – X, Y and Z Gates, Hadamard Gate, Phase Gate (or S Gate), T Gate Multiple Qubit Gates: Controlled gate, CNOT Gate, (Discussion for 4 different input states). Representation of Swap gate, Controlled -Z gate, Toffoli gate.

Pre requisites: Matrices

Self-learning: Moore's law

Module-4 (8 Hours)

Electrical Properties of Materials and Applications

Electrical Conductivity in metals

Resistivity and Mobility, Concept of Phonon, Matheissen's rule, Failures of Classical Free Electron Theory, Assumptions of Quantum Free Electron Theory, Fermi Energy, Density of States, Fermi Factor, Variation of Fermi Factor With Temperature and Energy. Numerical Problems.

Superconductivity

Introduction to Super Conductors, Temperature dependence of resistivity, Meissner's Effect, Critical Field, Temperature dependence of Critical field, Types of Super Conductors, BCS theory (Qualitative), Quantum Tunnelling, High Temperature superconductivity, Josephson Junctions (Qualitative), DC and RF SQUIDs (Qualitative), Applications in Quantum Computing: Charge, Phase and Flux qubits, Numerical Problems.

Pre requisites: Basics of Electrical conductivity

Self-learning: Resistivity and Mobility

Module-5 (8 hours)

Applications of Physics in computing:

Physics of Animation:

Taxonomy of physics based animation methods, Frames, Frames per Second, Size and Scale, Weight and Strength, Motion and Timing in Animations, Constant Force and Acceleration, The Odd rule, Odd-rule Scenarios, Motion Graphs, Examples of Character Animation: Jumping, Parts of Jump, Jump Magnification, Stop Time, Walking: Strides and Steps, Walk Timing. Numerical Problems

Statistical Physics for Computing: Descriptive statistics and inferential statistics, Poisson distribution and modeling the probability of proton decay, Normal Distributions (Bell Curves), Monte Carlo Method: Determination of Value of π . Numerical Problems.

Pre requisites: Motion in one dimension, Probability

Self-learning: Frames, Frames per Second

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO1	Describe the principles of LASERS and Optical fibers and their relevant applications.
CO2	Discuss the basic principles of the Quantum Mechanics and its application in Quantum Computing.
CO3	Summarize the essential properties of superconductors and its applications in qubits.
CO4	Illustrate the application of physics in design and data analysis.
CO5	Practice working in groups to conduct experiments in physics and perform precise and honest measurements.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50). The minimum passing mark for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination(SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

The CIE marks for the theory component of the IC shall be 30 marks and for the laboratory component 20 Marks.

CIE for the theory component of the IC

- Three Tests each of 20 Marks; after the completion of the syllabus of 35-40%, 65-70%, and 90-100% respectively.
- Two Assignments/two quizzes/ seminars/one field survey and report presentation/one-course project totalling 20 marks.

Total Marks scored (test + assignments) out of 80 shall be scaled down to 30 marks

CIE for the practical component of the IC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The **15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test (duration 03 hours) at the end of the 15th week of the semester /after completion of all the experiments (whichever is early) shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IC/IPCC for **20 marks**.

• The minimum marks to be secured in CIE to appear for SEE shall be 12 (40% of maximum marks) in the theory component and 08 (40% of maximum marks) in the practical component. The laboratory component of the IC/IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 05 questions is to be set from the practical component of IC/IPCC, the total marks of all questions should not be more than 25 marks.

The theory component of the IC shall be for both CIE and SEE.

Semester End Examination(SEE):

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the subject (**duration 03 hours**)

- The question paper shall be set for 100 marks. The medium of the question paper shall be English/Kannada). The duration of SEE is 03 hours.
- The question paper will have 10 questions. Two questions per module. Each question is set for 20 marks. The students have to answer 5 full questions, selecting one full question from each module. The student has to answer for 100 marks and **marks scored out of 100 shall be proportionally reduced to 50 marks**.

There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 subquestions), **should have a mix of topics** under that module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1. Solid State Physics, S O Pillai, New Age International Private Limited, 8th Edition, 2018.
- 2. Engineering Physics by Gupta and Gour, Dhanpat Rai Publications, 2016 (Reprint).
- 3. A Textbook of Engineering Physics- M.N. Avadhanulu and P.G. Kshirsagar, 10th revised Ed, S. Chand. & Company Ltd, New Delhi.
- 4. Concepts of Modern Physics, Aurthur Beiser, McGrawhill, 6th Edition, 2009.
- 5. Lasers and Non Linear Optics, B B Loud, New age international, 2011 edition.
- 6. A Textbook of Engineering Physics by M.N. Avadhanulu, P G. Kshirsagar and T V S Arun Murthy, Eleventh edition, S Chand and Company Ltd. New Delhi-110055.
- 7. Quantum Computation and Quantum Information, Michael A. Nielsen & Isaac L. Chuang, Cambridge Universities Press, 2010 Edition.

26.10.2022

- 8. Quantum Computing, Vishal Sahani, McGraw Hill Education, 2007 Edition.
- 9. Quantum Computing A Beginner's Introduction, Parag K Lala, Indian Edition, Mc GrawHill, Reprint 2020.
- 10. Engineering Physics, S P Basavaraj, 2005 Edition, Subhash Stores.
- 11. Physics for Animators, Michele Bousquet with Alejandro Garcia, CRC Press, Taylor & Francis, 2016.
- 12. Quantum Computation and Logic: How Quantum Computers Have Inspired Logical Investigations, Maria Luisa Dalla Chiara, Roberto Giuntini, Roberto Leporini, Giuseppe Sergioli, Trendsin Logic, Volume 48, Springer.
- 13. Statistical Physics: Berkely Physics Course, Volume 5, F. Reif, McGraw Hill.
- 14. Introduction to Superconductivity, Michael Tinkham, McGraw Hill, INC, II Edition

Web links and Video Lectures (e-Resources):

LASER: <u>https://www.youtube.com/watch?v=WgzynezPiyc</u>

Superconductivity : <u>https://www.youtube.com/watch?v=MT5X15ppn48</u>

Optical Fiber : <u>https://www.youtube.com/watch?v=N_kA8EpCUQo</u>

Quantum Mechanics : <u>https://www.youtube.com/watch?v=p7bzE1E5PMY&t=136s</u>

Quantum Computing : <u>https://www.youtube.com/watch?v=jHoEjvuPoB8</u>

Quantum Computing :<u>https://www.youtube.com/watch?v=ZuvCUU2jD30</u>

Physics of Animation : <u>https://www.youtube.com/watch?v=kj1kaA_8Fu4</u>

Statistical Physics Simulation : https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-

probability_en.html

NPTEL Supercoductivity: https://archive.nptel.ac.in/courses/115/103/115103108/

NPTEL Quantum Computing : <u>https://archive.nptel.ac.in/courses/115/101/115101092</u>

Virtual LAB :https://www.vlab.co.in/participating-institute-amrita-vishwa-vidyapeetham

Virtual LAB : <u>https://vlab.amrita.edu/index.php?sub=1&brch=189&sim=343&cnt=1</u>

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

http://nptel.ac.in

https://swayam.gov.in

https://virtuallabs.merlot.org/vl_physics.html

https://phet.colorado.edu

https://www.myphysicslab.com

Laboratory Component:

Any Ten Experiments have to be completed from the list of experiments

Note: The experiments have to be classified into

- a) Exercise
- b) Demonstration
- c) Structured Inquiry
- d) Open Ended

Based on the convenience classify the following experiments into above categories. Select at least one simulation/spreadsheet activity.

List of Experiments

- 1. Determination of wavelength of LASER using Diffraction Grating.
- 2. Determination of acceptance angle and numerical aperture of the given Optical Fiber.
- 3. Determination of Magnetic Flux Density at any point along the axis of a circular coil.
- 4. Determination of resistivity of a semiconductor by Four Probe Method
- 5. Study the I-V Characteristics of the Given Bipolar Junction Transistor.
- 6. Determination of dielectric constant of the material of capacitor by Charging and Discharging method.
- 7. Study the Characteristics of a Photo-Diode and to determine the power responsivity / Verification of Inverse Square Law of Intensity of Light.
- 8. Study the frequency response of Series & Parallel LCR circuits.
- 9. Determination of Planck's Constant using LEDs.
- 10. Determination of Fermi Energy of Copper.
- 11. Identification of circuit elements in a Black Box and determination of values of the components.
- 12. Determination of Energy gap of the given Semiconductor.
- 13. Step Interactive Physical Simulations.
- 14. Study of motion using spread Sheets
- 15. Study of Application of Statistics using spread sheets
- 16. PHET Interactive Simulations/filter?subjects=physics&type=html,prototype)

COs and POs Mapping (Individual teacher has to fill up)

COs						P	Os					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	-	-	-	-	-	-	-	-	-	2
CO2	3	3	-	-	-	-	-	-	-	-	-	2
CO3	3	3	-	-	-	-	-	-	-	-	-	2
CO4	3	2	1	-	1	-	-	-	-	-	-	2
CO5	3	2	1	-	2	-	-	3	3	-	-	2

Level 3- Highly Mapped, Level 2-Moderately Mapped, Level 1-Low Mapped,

Note : The CO-PO mapping values are indicative. The course coordinator can alter the mapping using **Competency and Performance Indicators** mentioned in the **AICTE Exam reforms.**