VISVESVARAYA TECHNOLOGICAL UNIVERSITY BELAGAVI

MECHANICAL ENGINEERING

BE/B.Tech. Scheme of Teaching and Examinations Outcome Based Education (OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2018 – 19)

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI Scheme of Teaching and Examination 2018 – 19 Outcome Based Education(OBE) and Choice Based Credit System (CBCS) (Effective from the academic year 2018 – 19)

VI SE	VI SEMESTER											
					Teachi	ng Hour	s /Week		Exam	ination		
SI. No	Cour Cour	rse and se code	Course Title	Teaching Department	Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	DCC	19ME61	Finite Floment Methods		L 2	1 2	Р	02	40	60	100	4
1	PCC	18WIE01	Finite Element Methods		3	2		03	40	00	100	4
2	PCC	18ME62	Design of Machine Elements II		3	2		03	40	60	100	4
3	PCC	18ME63	Heat Transfer		3	2		03	40	60	100	4
4	PEC	18ME64X	Professional Elective -1		3			03	40	60	100	3
5	OEC	18ME65X	Open Elective -A		3			03	40	60	100	3
6	PCC	18MEL66	Computer Aided Modelling and Analysis Lab			2	2	03	40	60	100	2
7	PCC	18MEL67	Heat Transfer Lab			2	2	03	40	60	100	2
8	MP	18MEMP68	Mini-project				2	03	40	60	100	2
9	Internship		Internship To be carried out during the vacation/s of VI and VII semesters and /or VII and VIII semesters.				or VII					
				TOTAL	15	10	06	24	320	480	800	24

Note: PCC: Professional core, PEC: Professional Elective, OE: Open Elective, MP: Mini-project.

Professional Elective -1					
Course code under	Course Title	Course code under	Course Title		
18XX64X		18XX64X			
18ME641	Non-Traditional Machining	18ME644	Vibrations and Noise Engineering		
18ME642	Refrigeration and Air conditioning	18ME645	Composite Materials Technology		
18ME643	Theory of Elasticity	18ME646	Entrepreneurship Development		
		Open Elective -A			

Students can select any one of the open electives offered by other Departments expect those that are offered by the parent Department (Please refer to the list of open electives under 18XX65X).

Selection of an open elective shall not be allowed if,

• The candidate has studied the same course during the previous semesters of the programme.

• The syllabus content of open elective is similar to that of the Departmental core courses or professional electives.

• A similar course, under any category, is prescribed in the higher semesters of the programme.

Registration to electives shall be documented under the guidance of Programme Coordinator/ Advisor/Mentor.

Mini-project work:

Based on the ability/abilities of the student/s and recommendations of the mentor, a single discipline or a multidisciplinary Mini- project can be assigned to an individual student or to a group having not more than 4 students.

CIE procedure for Mini-project:

(i) Single discipline: The CIE marks shall be awarded by a committee consisting of the Head of the concerned Department and two senior faculty members of the Department, one of whom shall be the Guide.

The CIE marks awarded for the Mini-project work, shall be based on the evaluation of project report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

(ii) Interdisciplinary: Continuous Internal Evaluation shall be group wise at the college level with the participation of all the guides of the college. The CIE marks awarded for the Mini-project, shall be based on the evaluation of project report, project presentation skill and question and answer session in the ratio 50:25:25. The marks awarded for the project report shall be the same for all the batch mates.

SEE for Mini-project:

(i) Single discipline: Contribution to the Mini-project and the performance of each group member shall be assessed individually in the semester end examination (SEE) conducted at the department.

(ii) Interdisciplinary: Contribution to the Mini-project and the performance of each group member shall be assessed individually in semester end examination (SEE) conducted separately at the departments to which the student/s belongs to.

Internship: All the students admitted to III year of BE/B. Tech shall have to undergo mandatory internship of 4 weeks during the vacation of VI and VII semesters and /or VII and VIII semesters. A University examination shall be conducted during VIII semester and the prescribed credit shall be included in VIII semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared fail and shall have to complete during subsequent University examination after satisfying the internship requirements.

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)					
	SEMESTER - VI				
	FINITE ELEMENT METHODS				
Course Code 18ME61 CIE Marks 40					
Teaching Hours /Week (L:T:P)	3:2:0	SEE Marks	60		
Credits	04	Exam Hours	03		
Course Learning Objectives:					
 To learn the basic principles of 	finite element analysis procedure	е			
• To understand the design and	heat transfer problems with appli	ication of FEM.			
• Solve 1 D, 2 D and dynamic problems using Finite Element Analysis approach.					
• To learn the theory and characteristics of finite elements that represent engineering structures.					
• To learn and apply finite element solutions to structural, thermal, dynamic problem to develop the					
knowledge and skills needed to effectively evaluate finite element analyses.					

Module-1

Introduction to Finite Element Method: General steps of the finite element method. Engineering applications of finite element method. Advantages of the Finite Element Method.

Boundary conditions: Homogeneous and non-homogeneous for structural, heat transfer and fluid flow problems. Potential energy method, Rayleigh Ritz method, Galerkin's method, Displacement method of finite element formulation. Convergence criteria, Discretisation process, **Types of elements:** 1D, 2D and 3D, Node numbering, Location of nodes. **Strain-** displacement relations, Stress-strain relations, Plain stress and Plain strain conditions, temperature effects.

Interpolation models: Simplex, complex and multiplex elements, linear interpolation polynomials in terms of global coordinates 1D, 2D, 3D Simplex Elements.

Module-2

Introduction to the stiffness (Displacement) method: Introduction, Derivation of stiffness matrix, Derivation of stiffness matrix for a spring element, Assembly the total stiffness matrix by superposition. One-Dimensional Elements-Analysis of Bars and Trusses, Linear interpolation polynomials in terms of local coordinate's for1D, 2Delements. Higher order interpolation functions for 1D quadratic and cubic elements in natural coordinates,

, , Constant strain triangle, Four-Nodded Tetrahedral Element (TET 4), Eight-Nodded Hexahedral Element (HEXA 3 8), 2D iso-parametric element, Lagrange interpolation functions.

Numerical integration: Gaussian quadrature one point, two point formulae, 2D integrals. Force terms: Body force, traction force and point loads, Numerical Problems: Solution for displacement, stress and strain in 1D streight bars, stopped bars, and topped bars using elimination enpress and populty enpress. Analysis of **Module-3**

Beams and Shafts: Boundary conditions, Load vector, Hermite shape functions, Beam stiffness matrix based on Euler-Bernoulli beam theory, Examples on cantilever beams, propped cantilever beams, Numerical problems on simply supported, fixed straight and stepped beams using direct stiffness method with concentrated and uniformly distributed load.

Torsion of Shafts: Finite element formulation of shafts, determination of stress and twists in circular shafts. **Module-4**

Heat Transfer: Basic equations of heat transfer: Energy balance equation, Rate equation: conduction, convection, radiation, 1D finite element formulation using vibration method, Problems with temperature gradient and heat fluxes, heat transfer in composite sections, straight fins.

Fluid Flow: Flow through a porous medium, Flow through pipes of uniform and stepped sections, Flow through hydraulic net works.

Module-5

Axi-symmetric Solid Elements: Derivation of stiffness matrix of axisymmetric bodies with triangular elements, Numerical solution of axisymmetric triangular element(s) subjected to surface forces, point loads, angular velocity, pressure vessels.

Dynamic Considerations: Formulation for point mass and distributed masses, Consistent element mass matrix of one dimensional bar element, truss element, axisymmetric triangular element, quadrilateral element, beam element. Lumped mass matrix of bar element, truss element, Evaluation of eigen values and eigen vectors, Applications to bars, stepped bars, and beams.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Identify the application and characteristics of FEA elements such as bars, beams, plane and isoparametric elements.
- CO2: Develop element characteristic equation and generation of global equation.
- CO3: Formulate and solve Axi-symmetric and heat transfer problems.
- CO4: Apply suitable boundary conditions to a global equation for bars, trusses, beams, circular shafts, heat transfer, fluid flow, axi-symmetric and dynamic problems

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textboo	k/s					
1	A first course in the Finite Element Method	Logan, D. L	Cengage Learning	6th Edition 2016		
2	Finite Element Method in Engineering	Rao, S. S	Pergaman Int. Library of Science	5th Edition 2010		
3	Finite Elements in Engineering	Chandrupatla T. R	PHI	2nd Edition 2013		
Referen	ce Books					
1	Finite Element Method	J.N.Reddy	McGraw -Hill International Edition			
2	Finite Elements Procedures	Bathe K. J	РНІ			
3	Concepts and Application of Finite Elements Analysis	Cook R. D., et al.	Wiley & Sons	4th Edition 2003		
E- L • V	• VTU, E- learning					

B. E. MECHANICAL ENGINEERING				
Choice Based Credit	SEMESTER - VI	e Based Education (OBE)		
	DESIGN OF MACHINE ELEME	NTS II		
Course Code	18ME62	CIE Marks	40	
Teaching Hours /Week (L:T:P)	3:2:0	SEE Marks	60	
Credits	04	Exam Hours	03	
 Course Learning Objectives: To understand various elements involved in a mechanical system. To analyze various forces acting on the elements of a mechanical system and design them using appropriate techniques, codes, and standards. To select transmission elements like gears, belts, pulleys, bearings from the manufacturers' 				
 To design a mechanical system integrating machine elements. To produce assembly and working drawings of various mechanical systems involving machine elements like belts, pulleys, gears, springs, bearings, clutches and brakes. 				
Module-1				
Springs: Types of springs, spring materials, stresses in helical coil springs of circular and non-circular cross sections. Tension and compression springs, concentric springs; springs under fluctuating loads. Leaf Springs: Stresses in leaf springs, equalized stresses, and nipping of leaf springs. Introduction to torsion and Belleville springs.				
Belts: Materials of construction of flat and V belts, power rating of belts, concept of slip and creep, initial tension, effect of centrifugal tension, maximum power condition. Selection of flat and V belts- length & cross section from manufacturers' catalogues. Construction and application of timing belts.				
Wire ropes: Construction of wire rope	s, stresses in wire ropes, and	selection of wire ropes.		

Gear drives: Classification of gears, materials for gears, standard systems of gear tooth, lubrication of gears, and gear tooth failure modes.

Spur Gears: Definitions, stresses in gear tooth: Lewis equation and form factor, design for strength, dynamic load and wear.

Helical Gears: Definitions, transverse and normal module, formative number of teeth, design based on strength, dynamic load and wear.

Module-3

Bevel Gears: Definitions, formative number of teeth, design based on strength, dynamic load and wear. **Worm Gears:** Definitions, types of worm and worm gears, and materials for worm and worm wheel. Design based on strength, dynamic, wear loads and efficiency of worm gear drives.

Module-4

Design of Clutches: Necessity of a clutch in an automobile, types of clutch, friction materials and its properties. Design of single plate, multi-plate and cone clutches based on uniform pressure and uniform wear theories.

Design of Brakes: Different types of brakes, Concept of self-energizing and self-locking of brakes. Practical examples, Design of band brakes, block brakes and internal expanding brakes.

Module-5

Lubrication and Bearings: Lubricants and their properties, bearing materials and properties; mechanisms of lubrication, hydrodynamic lubrication, pressure development in oil film, bearing modulus, coefficient of friction, minimum oil film thickness, heat generated, and heat dissipated. Numerical examples on hydrodynamic journal and thrust bearing design.

Antifriction bearings: Types of rolling contact bearings and their applications, static and dynamic load carrying capacities, equivalent bearing load, load life relationship; selection of deep grove ball bearings from the manufacturers' catalogue; selection of bearings subjected to cyclic loads and speeds; probability of survival.

Assignment:

Course work includes a **Design project**. Design project should enable the students to design a mechanical system (like single stage reduction gear box with spur gears, single stage worm reduction gear box, V-belt and pulley drive system, machine tool spindle with bearing mounting, C-clamp, screw jack, etc.) A group of students (maximum number in a group should be 4) should submit assembly drawing and part drawings, completely dimensioned, indicating the necessary manufacturing tolerances, surface finish symbols and geometric tolerances wherever necessary. Design project must be completed using appropriate solid modeling software. Computer generated drawings must be submitted. Design calculations must be hand written and should be included in the report. Design project should be given due credit in internal assessment.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Apply design principles for the design of mechanical systems involving springs, belts, pulleys, and wire ropes.

- CO2: Design different types of gears and simple gear boxes for relevant applications.
- CO3: Understand the design principles of brakes and clutches.
- CO4: Apply design concepts of hydrodynamic bearings for different applications and select Anti friction bearings for different applications using the manufacturers, catalogue.
- CO6: Apply engineering design tools to product design.

CO7: Become good design engineers through learning the art of working in a team.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textboo	ok/s				
1	Shigley's Mechanical Engineering Design	Richard G. Budynas,and J. Keith Nisbett	McGraw-Hill Education	10 th Edition, 2015	
2	Fundamentals of Machine Component Design	Juvinall R.C, and Marshek K.M	John Wiley & Sons	Third Edition 2007 Wiley student edition	
3	Design of Machine Elements	V. B. Bhandari	Tata Mcgraw Hill	4th Ed 2016.	
4	Design of Machine Elements-II	Dr.M H Annaiah Dr. J Suresh Kumar Dr.C N Chandrappa	New Age International (P) Ltd.,	1s Ed., 2016	
Reference Books					
1	Machine Design- an integrated approach	Robert L. Norton	Pearson Education	2 nd edition	
2	Design and Machine Elements	Spotts M.F., ShoupT.E	Pearson Education	8 th edition, 2006	

3	Machine design Hall, Holowenko, Laughlin (Schaum's Outline Series	adapted by S.K.Somani	Tata McGraw Hill Publishing Company Ltd	Special Indian Edition, 2008	
4	Elements of Machine Design	H.G.Patil, S.C.Pilli, R.R.Malagi, M.S.Patil	IK International	First edition,2019	
5	Design of Machine ElementsVolume II	T. Krishna Rao	IK international publishing house	2013	
6	Hand book of Mechanical Design	G. M. Maithra and L.V.Prasad	Tata McGraw Hill	2 nd edition,2004	
Design Data Hand Books:					

[1] Design Data Hand Book, K.Lingaiah, McGraw Hill, 2nd edition, 2003.

[2] Design Data Hand Book, K.Mahadevan and Balaveera Reddy, CBS publication.

[3] Design Data Hand Book, H.G.Patil, I.K.International Publisher, 2010

[4] PSG Design Data Hand Book. PSG College of technology. Coimbatore.

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER - VI

HEAT TRANSFER				
Course Code	18ME63	CIE Marks	40	
Teaching Hours /Week (L:T:P)	3:2:0	SEE Marks	60	
Credits	04	Exam Hours	03	

Course Learning Objectives:

- Study the modes of heat transfer.
- Learn how to formulate and solve 1-D steady and unsteady heat conduction problems.
- Apply empirical correlations for fully-developed laminar, turbulent internal flows and external boundary layer convective flow problems.
- Study the basic principles of heat exchanger analysis and thermal design.
- Understand the principles of boiling and condensation including radiation heat transfer related engineering problems.

Module-1

Introductory concepts and definitions: Modes of heat transfer: Basic laws governing conduction, convection, and radiation heat transfer; Types of boundary conditions. General three dimensional Heat Conduction Equation: Derivation of the equation in (i) Cartesian, coordinate only. Discussion of three dimensional Heat Conduction Equation in (ii) Polar and (iii) Spherical Co-ordinate Systems.

Steady-state one-dimensional heat conduction problems in Cartesian System: Steady-state one-dimensional heat conduction problems (i) without heat generation and (ii) constant thermal conductivity - in Cartesian system with various possible boundary conditions. Brief Introduction to variable thermal conductivity and heat generation [No numerical on variable thermal conductivity and heat generation] Thermal Resistances in Series and in Parallel. Critical Thickness of Insulation in cylinder and spheres Concept. Derivation

Module-2

Extended Surfaces or Fins: Classification, Straight Rectangular and Circular Fins, Temperature Distribution and Heat Transfer Calculations, Fin Efficiency and Effectiveness, Applications

Transient [Unsteady-state] heat conduction: Definition, Different cases - Negligible internal thermal resistance, negligible surface resistance, comparable internal thermal and surface resistance, Lumped body, Infinite Body and Semi-infinite Body, Numerical Problems, Heisler and Grober charts.

Module-3

Numerical Analysis of Heat Conduction: Introduction, one-dimensional steady conduction and one dimensional unsteady conduction, boundary conditions, solution methods.

Thermal Radiation: Fundamental principles - Gray, White, Opaque, Transparent and Black bodies, Spectral emissive power, Wien's displacement law, Planck's laws, Hemispherical Emissive Power, Stefan-Boltzmann law for the total emissive power of a black body, Emissivity and Kirchhoff's Laws, View factor, Net radiation exchange between parallel plates, concentric cylinders, and concentric spheres, Radiation Shield.

Module-4

Forced Convection: Boundary Layer Theory, Velocity and Thermal Boundary Layers, Prandtl number, Turbulent flow, Various empirical solutions, Forced convection flow over cylinders and spheres, Internal flows –laminar and turbulent flow solutions.

Free convection: Laminar and Turbulent flows, Vertical Plates, Vertical Tubes and Horizontal Tubes, Empirical solutions.

Module-5

Heat Exchangers: Definition, Classification, applications, LMTD method, Effectiveness - NTU method, Analytical Methods, Fouling Factors, Chart Solution Procedures for solving Heat Exchanger problems: Correction Factor Charts and Effectiveness-NTU Charts.

Introduction to boiling: pool boiling, Bubble Growth Mechanisms, Nucleate Pool Boiling, Critical Heat Flux in Nucleate Pool Boiling, Pool Film Boiling, Critical Heat Flux, Heat Transfer beyond the Critical Point, filmwise and dropwise Condensation.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Understand the modes of heat transfer and apply the basic laws to formulate engineering systems.
- CO2: Understand and apply the basic laws of heat transfer to extended surface, composite material and unsteady state heat transfer problems.
- CO3: Analyze heat conduction through numerical methods and apply the fundamental principle to solve radiation heat transfer problems.
- CO4: Analyze heat transfer due to free and forced convective heat transfer.
- CO5: Understand the design and performance analysis of heat exchangers and their practical applications, Condensation and Boiling phenomena.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
Textboo	Textbook/s						
1	Principals of heat transfer	Frank Kreith, Raj M. Manglik, Mark S. Bohn	Cengage learning	Seventh Edition 2011.			
2	Heat transfer, a practical approach	Yunus A. Cengel	Tata Mc Graw Hill	Fifth edition			
Referen	ice Books						
1	Heat and mass transfer	Kurt C, Rolle	Cengage learning	second edition			
2	Heat Transfer A Basic Approach	M. NecatiOzisik	McGraw Hill, New York	2005			
3	Fundamentals of Heat and Mass Transfer	Incropera, F. P. and De Witt, D. P	John Wiley and Sons, New York	5th Edition 2006			
4	Heat Transfer	Holman, J. P.	Tata McGraw Hill, New York	9th Edition 2008			

	B E MECHANICAL EN	IGINFERING			
Choice Based Cre	dit System (CBCS) and O	outcome Based Education (()BF)		
	SEMESTER –	VI			
	Professional Elec	ctive- 1			
	NON-TRADITIONAL N	ACHINING			
Course Code	18ME641	CIF Marks	40		
Teaching Hours /Week (I 'T'P)	3.0.0	SEE Marks	60		
Credits	03	Exam Hours	03		
Course Learning Objectives:					
To learn various concents ru	elated to modern machir	ing processes & their applic	ations		
To appreciate the difference	es between conventional	l and non-conventional mac	hining processes		
To appreciate the unterene	lerstanding of non-traditi	onal manufacturing equipm	ont		
To acquire a functional und To know about various	process parameters ar	ad their influence on no	rformanco and thoir		
	process parameters ar	id then initialitie on pe	normance and their		
applications.	rious types of energy inv	alvad in nan traditional ma	hining processos		
To impart knowledge on va	nous types of energy inv		inning processes.		
Wodule-1	abining Nood for Non tre		Comparison botwoon		
Introduction to Non-traditional mat	chining, need for Non-tra	aditional machining process	, comparison between		
traditional and non-traditional n	nachining, general class	silication Non-traditional	machining processes,		
classification based on nature of	energy employed in ma	achining, selection of non-	traditional machining		
processes, specific advantages, limi	itations and applications	of non-traditional machinin	g processes.		
Module-2					
Ultrasonic Machining (USM): Intro	oduction, Equipment and	l material process, Effect o	f process parameters:		
Effect of amplitude and frequency	, Effect of abrasive grain	diameter, effect of slurry,	tool & work material.		
Process characteristics: Material re	moval rate, tool wear, a	ccuracy, surface finish, appli	cations, advantages &		
limitations of USM.					
Abrasive Jet Machining (AJM): Int	roduction, Equipment an	d process of material remo	val, process variables:		
carrier gas, type of abrasive, wo	ork material, stand-off	distance (SOD). Process cl	haracteristics-Material		
Module-3	. O curto co finich Annlin	ations advantages 0 limitet			
ELECTROCHEMICAL MACHINING	(ECM): Introduction.	Principle of electro chem	ical machining. ECM		
equipment, elements of ECM oper	ration. Chemistry of ECN	A. ECM Process characteris	tics: Material removal		
rate, accuracy, surface finish, Proce	ess parameters: Current (density. Tool feed rate. Gap	between tool & work		
piece, velocity of electrolyte flow	w. type of electrolyte.	its concentration temper	ature, and choice of		
electrolytes, FCM Tooling; FCM too	oling technique & examp	le. Tool & insulation materi	als. Applications FCM:		
Electrochemical grinding and elect	rochemical honing proce	ss. Advantages, disadvanta	ges and application of		
ECG. ECH.	0 P		5		
CHEMICAL MACHINING (CHM): EI	lements of the process.	Resists (maskants). Etchan	ts. Types of chemical		
machining process-chemical blank	king process, chemical r	nilling process. Process ch	aracteristics of CHM:		
material removal rate, accuracy.	surface finish, advant	ages, limitations and app	lications of chemical		
machining process.	,,	-8,			
Module-4					
ELECTRICAL DISCHARGE MACHINI		mechanism of metal remo	oval. EDM equipment		
spark erosion generator (relaxation	NG (EDM): Introduction.	mits functions 9 desirable	proportion alectrode		
feed control system. Flushing type	NG (EDM): Introduction, n type), dielectric mediu	m-its functions & desirable	properties, electrone		
process parameters: Spark frequency current & spark gap surface finish Heat Affected Zone Advantages					
process parameters: Spark frequer	NG (EDM): Introduction, n type), dielectric mediu s; pressure flushing, suc	tion flushing, side flushing, surface finish. Heat Affect	pulsed flushing. EDM		
process parameters: Spark frequer	NG (EDM): Introduction, n type), dielectric mediu s; pressure flushing, suc ncy, current & spark gap Electrical discharge grindi	tion flushing, side flushing, , surface finish, Heat Affect	pulsed flushing. EDM red Zone. Advantages,		
process parameters: Spark frequer limitations & applications of EDM, I PLASMA ARC MACHINING (PAM):	NG (EDM): Introduction, n type), dielectric mediu s; pressure flushing, suc ncy, current & spark gap Electrical discharge grindi Introduction, non-therma	tion flushing, side flushing, , surface finish, Heat Affect ing, Traveling wire EDM. al generation of plasma equ	pulsed flushing. EDM red Zone. Advantages,		
process parameters: Spark frequer limitations & applications of EDM, F PLASMA ARC MACHINING (PAM): metal removal. Plasma torch pu	NG (EDM): Introduction, n type), dielectric mediu s; pressure flushing, suc ncy, current & spark gap Electrical discharge grindi Introduction, non-therma rocess parameters, prod	tion flushing, side flushing, , surface finish, Heat Affect ing, Traveling wire EDM. al generation of plasma, equ cess characteristics. Safety	pulsed flushing. EDM red Zone. Advantages, puppent mechanism of precautions. Safety		

Module-5

LASER remova ELECTR	LASER BEAM MACHINING (LBM): Introduction, generation of LASER, Equipment and mechanism of metal removal, LBM parameters and characteristics, Applications, Advantages & limitations. ELECTRON BEAM MACHINING (EBM): Introduction, Principle, equipment and mechanism of metal removal,					
applicat	ions, advantages and limitatio	ons.		· · · · · · · · · · · · · · · · · · ·		
Course	Course Outcomes: At the end of the course, the student will be able to:					
CO1: Ur	derstand the compare tradition	onal and non-traditional n	nachining process and recog	nize the need for		
No	n- traditional machining proce	SS.				
CO2: Ur	derstand the constructional fe	eatures, performance para	ameters, process characteri	stics, applications,		
adv	antages and limitations of US	M, AJM and WJM.				
CO3: Ide	entify the need of Chemical an	d electro-chemical machi	ning process along with the	constructional		
fea	tures, process parameters, pro	ocess characteristics, app	ications, advantages and lir	nitations.		
CO4: Ur	derstand the constructional fe	eature of the equipment,	process parameters, proces	s characteristics,		
ар	plications, advantages and limit	itations EDM & PAM.				
CO5: Ur	derstand the LBM equipment	, LBM parameters, and ch	aracteristics. EBM equipme	nt and mechanism		
of	metal removal, applications, a	dvantages and limitations	LBM & EBM.			
Questio	n paper pattern:					
• Tł	ne question paper will have ter	n full questions carrying e	qual marks.			
• Ea	ach full question will be for 20	marks.				
• Tł	nere will be two full questions	(with a maximum of four	sub- questions) from each r	nodule.		
• Ea	ch full question will have sub-	question covering all the	topics under a module.			
• Tł	ne students will have to answe	r five full questions, selec	ting one full question from	each module.		
SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textboo	ok/s		•			
1	Modern Machining Process	by P.C Pandey and H S	McGraw Hill Education	2000		
		Shah	India Pvt. Ltd.			
2	Production technology	HMT	McGraw Hill Education	2001		
Deferer	co Pooks		India Pvt. Ltd			
Referen	Now Tochnology	Dr Amitabha	The Institute of	2000		
1	New recillology	Bhattacharwa	Engineers (India)	2000		
2	Modern Machining process	Aditya		2002		

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VI				
Professional Elective- 1				
REFRIGERATION AND AIR CONDITIONING				
Course Code	18ME642	CIE Marks	40	
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- Study the basic definition, ASHRAE Nomenclature for refrigerating systems.
- Understand the working principles and applications of different types of refrigeration systems.
- Study the working of air conditioning systems and their applications.
- Identify the performance parameters and their relations of an air conditioning system.

Module-1

Introduction to Refrigeration –Basic Definitions, ASHRAE Nomenclature, Air Refrigeration Cycles-reversed Carnot cycle, Bell-Coleman cycle analysis, Air Refrigeration systems-merits and demerits and applications: Aircraft refrigeration cycles, Joule Thompson coefficient and Inversion Temperature, Linde, Claude and Stirling cycles for liquefaction of air.

Industrial Refrigeration-Chemical and process industries, Dairy plants , Petroleum refineries, Food processing and food chain, Miscellaneous

Module-2

Vapour Compression Refrigeration System(VCRS): Comparison of Vapour Compression Cycle and Gas cycle, Vapour Compression Refrigeration system Working and analysis, Limitations, Superheat horn and throttling loss for various refrigerants, efficiency, Modifications to standard cycle – liquid-suction heat exchangers, Grindlay cycle and Lorenz cycle, Optimum suction condition for optimum COP Actual cycles with pressure drops, Complete Vapour Compression Refrigeration System, Multi-Pressure, Multi-evaporator systems or Compound Vapour Compression Refrigeration Systems – Methods like Flash Gas removal, Flash inter cooling and water Inter cooling.

Module-3

Vapour Absorption Refrigeration Systems: Absorbent – Refrigerant combinations, Water-Ammonia Systems, Practical problems, Lithium- Bromide System, Contrast between the two systems, Modified Version of Aqua-Ammonia System with Rectifier and Analyzer Assembly.Practical problems – crystallization and air leakage, Commercial systems

Other types of Refrigeration systems: Brief Discussion on (i) Steam-Jet refrigeration system and (ii) Thermoelectric refrigeration, pulse tube refrigeration, thermoacoustic refrigeration systems

Module-4

Refrigerants: Primary and secondary refrigerants, Designation of Refrigerants, Desirable properties of refrigerants including solubility in water and lubricating oil, material compatibility, toxicity, flammability, leak detection, cost, environment and performance issues Thermodynamic properties of refrigerants, Synthetic and natural refrigerants, Comparison between different refrigerants vis a vis applications, Special issues and practical implications Refrigerant mixtures – zeotropic and azeotropic mixtures

Refrigeration systems Equipment: Compressors, Condensers, Expansion Devices and Evaporators, A brief look at other components of the system.

Module-5

Air-Conditioning: Introduction to Air-Conditioning, Basic Definition, Classification, power rating, Mathematical Analysis of Air-Conditioning Loads, Related Aspects, Different Air-Conditioning Systems-Central – Station Air-Conditioning System, Unitary Air-Conditioning System, Window Air-Conditioner and Packaged Air-Conditioner, Components related to Air-Conditioning Systems.

Transport air conditioning Systems: Air conditioning systems for automobiles (cars, buses etc.), Air conditioning systems for trains, Air conditioning systems for ships

Course Outcomes: At the end of the course, the student will be able to:

CO1: Illustrate the principles, nomenclature and applications of refrigeration systems.

CO2: Explain vapour compression refrigeration system and identify methods for performance improvement

CO3: Study the working principles of air, vapour absorption, thermoelectric and steam-jet and thermoacoustic refrigeration systems.

CO4: Estimate the performance of air-conditioning systems using the principles of psychrometry.

CO5: Compute and Interpret cooling and heating loads in an air-conditioning system.

CO6: Identify suitable refrigerant for various refrigerating systems.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Refrigeration and Air-	Arora C.P	Tata Mc Graw –Hill,	2 nd Edition, 2001
	conditioning			
2	Principles of Refrigeration	Roy J. Dossat	Wiley Limited	
3	Refrigeration and Air-	Stoecker W.F., and	Mc Graw - Hill, New	2nd edition,
	conditioning	Jones J.W.,	Delhi	1982.
Referen	ice Books			
1	Heating, Ventilation and Air	McQuistion	Wiley Students	5 th edition2000.
	Conditioning		edition	
2	Air conditioning	ΡΙΤΑ	Pearson	4th edition 2005
3	Refrigeration and Air-	S C Arora& S	Dhanpat Rai	
	Conditioning	Domkundwar	Publication	
4	Principles of Refrigeration	Dossat	Pearson	2006
5	Refrigeration and Air-	Manohar prasad		
	Conditioning			
6	Handbook of Air Conditioning	Shan K. Wang	McGraw-Hill	2/e,2001
	and Refrigeration		Education	

Data Book:

1. Mathur M.L. & Mehta, Refrigerant and Psychrometric Properties (Tables & Charts) SI Units, F.S., Jain Brothers, 2008

E- Learning

<u>http://nptel.ac.in/courses/112105128/#</u>

E-Resources

• VTU, E- learning, MOOCS, Open courseware

B. E. MECHANICAL ENGINEERING						
Choice Based Credit System (CBCS) and Outcome Based Education (OBE)						
	SEMESTER – V	I				
	Professional Electi	ve- 1				
THEORY OF ELASTICITY						
Course Code	18ME643	CIE Marks	40			
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60			
redits 03 Exam Hours 03						
Course Learning Objectives:						
• To provide the student with the mathematical and physical principles of Theory of Elasticity.						

• To provide the student with various solution strategies while applying them to practical cases.

Module-1

Analysis of Stress: Definition and notation of stress, Equations of equilibrium in differential form, Stress components on an arbitrary plane, Equality of cross shear, Stress invariants, Principal stresses, Octahedral stress, Planes of maximum shear, Stress transformation, Plane state of stress, Mohr's diagram for 3dimensional state of stress.

Module-2

Analysis of Strain: Displacement field, Strains in term of displacement field, Infinitesimal strain at a point, Engineering shear strains, Strain invariants, Principal strains, Octahedral strains, Plane state of strain, Compatibility equations, Strain transformation. Principle of super position, Saint Venant principle.

Module-3

Two-Dimensional classical elasticity: Cartesian co-ordinates, Relation between plane stress and plane strain, stress functions for plane stress and plane strain state, Airy's stress functions, investigation of Airy's stress function for simple beams. Bending of a narrow cantilever beam of rectangular cross section under edge load. Bending of simply supported beam under UDL, stress concentration, stress distribution in an infinite plate with a circular hole subjected to uniaxial and biaxial loads.

General equations in polar coordinates, stress distribution symmetrical about an axis, Thick wall cylinder subjected to internal and external pressures.

Module-4

Stress analysis in Axisymmetric body: Stresses in rotating discs of uniform thickness and cylinders. Numerical Problems.

Torsion: Torsion of circular, elliptical and triangular bars, Prandtl's membrane analogy, Torsion of thin walled thin tubes, Torsion of thin walled multiple cell closed sections.

Module-5

Thermal stress: Thermo elastic stress strain relations, equations of equilibrium, thermal stresses in thin circular discs and in long circular cylinders.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Understand the Basic field equations of linear elastic solids, force, stress, strain and equilibrium in solids. CO2: Analyse the 2D structural elements, beams, cylinders.

CO3: Use analytical techniques to predict deformation, internal force and failure of simple solids and structural

components.

CO4: Analyse the axisymmetric structural elements.

CO5: Analyse the structural members subjected to torsion

CO6: Determine the thermal stresses in plain stress and plane stain conditions.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	k/s			
1	Theory of Elasticity	S. P. Timoshenko and J. N Gordier	Mc-Graw Hill International	3rd edition, 2010
2	Advanced Mechanics of solids	L. S. Srinath	Tata Mc. Graw Hill	2009
Referen	ce Books			
1	Theory of Elasticity	Sadhu Singh	Khanna Publications	2004
2	Applied Elasticity	T.G. Seetharamuand Govindaraju	Interline Publishing	2008.

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VI Professional Elective- 1 ADAVNCED VIBRATIONS

Course Code	18ME644	CIE Marks	40
Teaching Hours /Week (L:T:P)	3:0:0	SEE Marks	60
Credits	03	Exam Hours	03

Course Learning Objectives:

- To enable the students to understand the theoretical principles of vibration and vibration analysis techniques for the practical solution of vibration problems.
- To enable the students to understand the importance of vibrations in mechanical design of machine parts subject to vibrations
- To make free and forced (harmonic, periodic, non-periodic) vibration analysis of single and multidegree of freedom linear systems.
- Be able to write the differential equation of motion of vibratory systems.

Module-1

Forced vibrations (1DOF): Introduction, analysis of forced vibration with constant harmonic excitation, MF, rotating and reciprocating unbalances, excitation of support (Relative and absolute amplitudes), force and motion transmissibility, energy dissipated due to damping and numerical problems.

Systems with 2DOF: Principal modes of vibrations, normal mode and natural frequencies of systems (Damping is not included), simple spring-mass systems, masses on tightly stretched strings, double pendulum, tensional systems, combined rectilinear and angular systems, geared systems and numerical problems.

Module-2

Numerical methods for multi DOF systems: Maxwell's reciprocal theorem, influence coefficients, Rayleigh's method, Dunkerley's method, stodola method, orthogonality principle, method of matrix iteration and numerical.

Modal analysis and condition monitoring: signal analysis, dynamic testing of machines and structures, Module-3

Vibration measuring instruments and whirling of shafts: seismic instruments, vibrometers, accelerometer, frequency measuring instruments and numerical. Whirling of shafts with and without damping.

Vibration Control: Introduction, Vibration isolation theory, Vibration isolation and motion isolation for harmonic excitation, practical aspects of vibration analysis, vibration isolation, Dynamic vibration absorbers and Vibration dampers.

Module-4

Transient Vibration of single Degree-of freedom systems: Impulse excitation, arbitrary excitation, Laplace transforms formulation, Pulse excitation and rise time, Shock response spectrum, Shock isolation.

Noise Engineering: Subjective response of sound: Frequency and sound dependent human response; the decibel scale; relationship between , sound pressure level(SPL), sound power level and sound intensity scale; relationship between addition, subtraction and averaging, sound spectra and Octave band analysis ; loudness; weighting networks; equivalent sound level, auditory effects of noise; hazardous noise, exposure due to machines and equipment; hearing conservation and damage risk criteria, daily noise doze.

Module-5

Noise: Sources, Isolation and control: Major sources of noise on road and in industries, noise due to construction equipment and domestic appliances, industrial noise control, strategies-noise control at source (with or without sound enclosures), noise control along the path (with or without partitions and acoustic barriers); noise control at the receiver, ear defenders, earplugs, semi-insert protectors.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Characterize the single and multi-degrees of freedom systems subjected to free and forced vibrations with

and without damping.

- CO2: Apply the method of vibration measurements and its controlling.
- CO3: Determine vibratory responses of SDOF and MDOF systems to harmonic, periodic and non-periodic excitation.

CO4: Analyze the mathematical model of a linear vibratory system to determine its response.

CO5: Obtain linear mathematical models of reallife engineering systems.

CO6: Apply the principles of vibration and noise reduction techniques to real life engineering problems.

Question paper pattern:

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.

• The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Mechanical Vibrations	S. S. Rao	Pearson Education	
2	Fundamentals of Mechanical Vibration	S. Graham Kelly	McGraw-Hill	
3	Mechanical Vibrations	W.T. Thomson	Prentice Hill India	
4	Vibraitons and Acoustics – Measurements and signal	C Sujatha	Tata McGraw Hill	
Referen	ice Books			
1	Mechanical Vibrations	G. K. Grover	Nem Chand and Bros.	
2	Theory of Vibration with Application	William T. Thomson, Marie Dillon Dahleh, Chandramouli	Pearson Education	5th edition
3	Mechanical Vibrations	V. P. Singh	Dhanpat Rai & Company	
4	Mechanical Vibrations and Noise engineering	Amberkar A.G.	PHI	
E- Learn • VTU, E	i ing E- learning			

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER – VI Professional Elective- 1

COMPOSITE MATERIALS TECHNOLOGY				
Course Code	18ME645	CIE Marks	40	
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60	
Credits	03	Exam Hours	03	

Course Learning Objectives:

- To know the behaviour of constituents in the composite materials
- To Enlighten the students in different types of reinforcement
- To Enlighten the students in different types of matrices
- To develop the student's skills in understanding the different manufacturing methods available for composite material.
- To understand the various characterization techniques
- To illuminate the knowledge and analysis skills in applying basic laws in mechanics to the composite materials.

Module-1

Introduction to Composite Materials: Definition, classification & brief history of composite materials. **Constituent of composite materials:** Reinforcements, Matrix, Coupling agents, coatings & fillers.

Reinforcements: Introduction, Glass Fibers, Boron Fibers, Carbon Fibers, Organic Fibers, Ceramic Fibers, Whiskers, Other Non-oxide Reinforcements, Comparison of Fibers

Matrix Materials: Polymers, Metals and Ceramic Matrix Materials.

Interfaces: Wettability, Crystallographic nature of interface, types of bonding at the interface and optimum interfacial bond strength.

Module-2

Polymer Matrix Composites (PMC): Processing of PMC's; Processing of Thermoset Matrix Composites, Thermoplastic Matrix Composites, Sheet Moulding Compound and carbon reinforced polymer composites. Interfaces in PMC's, Structure & Properties of PMC's, applications

Metal Matrix Composites: Types of metal matrix composites, Important Metallic Matrices, Processing, Interfaces in Metal Matrix Composites, Properties & Applications.

Module-3

Ceramic Matrix Composites (CMC): Processing of CMC's; Cold Pressing & Sintering, Hot Pressing, Reaction Bonding Processes, Infiltration, Directed Oxidation, In Situ Chemical Reaction Technique, Sol-Gel, Polymer Infiltration & Pyrolysis, Electrophoretic Deposition, Self-Propagating High Temperature Synthesis. Interfaces, properties and applications of CMC's.

Carbon Fiber/Carbon Matrix Composites: Processing of Carbon/Carbon Composites, Oxidation protection of Carbon/Carbon Composites, Properties of Carbon/Carbon Composites, and application of Carbon/Carbon Composites.

Multi-filamentary Superconducting Composites: The Problem of Flux Pinning, Types of Super Conductor, Processing & structure of Multi filamentary superconducting composites. Applications of multi-filamentary superconducting composites.

Module-4

Nonconventional Composites: Introduction, Nanocomposites; Polymer clay nanocomposites, self healing composites, self-reinforced composites. Biocomposites, Laminates; Ceramic Laminates, Hybrid Composites. Performance/Characterization of Composites: Static Mechanical Properties; Tensile Properties, Compressive Properties, Flexural Properties, In-Plane Shear Properties, Interlaminar Shear Strength. Fatigue Properties; Tension–Tension Fatigue, Flexural Fatigue. Impact Properties; Charpy, Izod, and Drop-Weight Impact Test.

Module-5

Micromechanics of Composites: Density, Mechanical Properties; Prediction of Elastic Constants, Micromechanical Approaches, Halpin-Tsai Equations, Transverse Stresses, Thermal properties. Numerical Problems.

Macromechanics of Composites: Introduction, Elastic constants of an isotropic material, elastic constants of a lamina, relationship between engineering constants and reduced stiffnesses and compliances.

Course Outcomes: At the end of the course, the student will be able to:

CO1: Use different types of manufacturing processes in the preparation of composite materials

CO2: Analyze the problems on macro mechanical 88ehavior of composites

CO3: Analyze the problems on micromechanical 88ehavior of Composites

CO4: Determine stresses and strains relation in composites materials.

CO5: Understand and effective use of properties in design of composite structures

CO6: Perform literature search on a selected advanced material topic.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s		•	·
1	Composite Material Science and Engineering	Krishan K. Chawla	Springer	Third Edition First Indian Reprint 2015
2	Fibre-Reinforced Composites, Materials, Manufacturing, and Design	P.K. Mallick	CRC Press, Taylor & Francis Group	Third Edition
3	Mechanics of Composite Materials & Structures	MadhijitMukhopadhay	Universities Press	2004
Referen	ce Books			
1	Mechanics of Composite materials	Autar K. Kaw	CRC Taylor & Francis	2nd Ed, 2005
2	Stress analysis of fiber Reinforced Composites Materials	Michael W, Hyer	Mc-Graw Hill International	2009
3	Mechanics of Composite Materials	.Robert M. Jones	Taylor & Francis	1999
E- Learn • VTU, E	ing - learning			

B. E. MECHANICAL ENGINEERING				
Choice Based Ci	redit System (CBCS) and Ou	itcome Based Education (OBE)		
	SEIVIESTER -V			
	OPEN ELECTIVE	: A		
	NON CONVENTIONAL ENE	RGY SOURCES		
Course Code	18ME651	CIE Marks	40	
Teaching Hours/Week (L:T:P)3:0:0SEE Marks60				
Credits 03 Exam Hours 03				
Course Learning Objectives:				

- To introduce the concepts of solar energy, its radiation, collection, storage and application.
- To introduce the concepts and applications of Wind energy, Biomass energy, Geothermal energy and ٠ Ocean energy as alternative energy sources.
- To explore society's present needs and future energy demands.
- To examine energy sources and systems, including fossil fuels and nuclear energy, and then focus on alternate, renewable energy sources such as solar, biomass (conversions), wind power, geothermal, etc.
- To get exposed to energy conservation methods.

Module-1

Introduction: Energy source, India's production and reserves of commercial energy sources, need for nonconventional energy sources, energy alternatives, solar, thermal, photovoltaic. Water power, wind biomass, ocean temperature difference, tidal and waves, geothermal, tar sands and oil shale, nuclear (Brief descriptions); advantages and disadvantages, comparison (Qualitative and Quantitative).

Solar Radiation: Extra-Terrestrial radiation, spectral distribution of extra terrestrial radiation, solar constant, solar radiation at the earth's surface, beam, diffuse and global radiation, solar radiation data.

Measurement of Solar Radiation: Pyrometer, shading ring pyrheliometer, sunshine recorder, schematic diagrams and principle of working.

Module-2

Solar Radiation Geometry: Flux on a plane surface, latitude, declination angle, surface azimuth angle, hour angle, zenith angle, solar altitude angle expression for the angle between the incident beam and the normal to a plane surface (No derivation) local apparent time. Apparent motion of sum, day length, numerical examples.

Radiation Flux on a Tilted Surface: Beam, diffuse and reflected radiation, expression for flux on a tilted surface (no derivations) numerical examples.

Solar Thermal Conversion: Collection and storage, thermal collection devices, liquid flat plate collectors, solar air heaters concentrating collectors (cylindrical, parabolic, paraboloid) (Quantitative analysis); sensible heat storage, latent heat storage, application of solar energy water heating. Space heating and cooling, active and nassive systems nower generation, refrigeration, Distillation (Qualitative analysis) solar nond, principle of Module-3

Performance Analysis of Liquid Flat Plate Collectors: General description, collector geometry, selective surface (qualitative discussion) basic energy-balance equation, stagnation temperature, transmissivity of the cover system, transmissivity - absorptivity product, numerical examples. The overall loss coefficient, correlation for the top loss coefficient, bottom and side loss coefficient, problems (all correlations to be provided). Temperature distribution between the collector tubes, collector heat removal factor, collector efficiency factor and collector flow factor, mean plate temperature, instantaneous efficiency (all expressions to be provided). Effect of various parameters on the collector performance; collector orientation, selective surface, fluid inlet temperature, number covers, dust.

Photovoltaic Conversion: Description, principle of working and characteristics, application.

Module-4

Wind Energy : Properties of wind, availability of wind energy in India, wind velocity and power from wind; major problems associated with wind power, wind machines; Types of wind machines and their characteristics, horizontal and vertical axis wind mills, elementary design principles; coefficient of performance of a wind mill rotor, aerodynamic considerations of wind mill design, numerical examples.

Tidal Power: Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, harnessing tidal energy, limitations.

Ocean Thermal Energy Conversion: Principle of working, Rankine cycle, OTEC power stations in the world, problems associated with OTEC.

Module-5

Geothermal Energy Conversion: Principle of working, types of geothermal station with schematic diagram, geothermal plants in the world, problems associated with geothermal conversion, scope of geothermal energy.

Energy from Bio Mass: Photosynthesis, photosynthetic oxygen production, energy plantation, bio gas production from organic wastes by anaerobic fermentation, description of bio-gas plants, transportation of bio-gas, problems involved with bio-gas production, application of bio-gas, application of bio-gas in engines, advantages.

Hydrogen Energy: Properties of Hydrogen with respected to its utilization as a renewable form of energy, sources of hydrogen, production of hydrogen, electrolysis of water, thermal decomposition of water, thermo chemical production bio-chemical production.

Course Outcomes: At the end of the course, the student will be able to:

- CO1: Describe the environmental aspects of non-conventional energy resources. In Comparison with various conventional energy systems, their prospects and limitations.
- CO2: Know the need of renewable energy resources, historical and latest developments.
- CO3: Describe the use of solar energy and the various components used in the energy production with respect to applications like-heating, cooling, desalination, power generation, drying, cooking etc.
- CO4: Appreciate the need of Wind Energy and the various components used in energy generation and know the classifications.
- CO5: Understand the concept of Biomass energy resources and their classification, types of biogas Plantsapplications
- CO6: Compare Solar, Wind and bio energy systems, their prospects, Advantages and limitations.
- CO7: Acquire the knowledge of fuel cells, wave power, tidal power and geothermal principles and applications.

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	ok/s			
1	Non-Convention Energy Resources	B H Khan	McGraw Hill Education (India) Pvt. Ltd.	3 rd Edition
2	Solar energy	Subhas P Sukhatme	Tata McGraw Hill	2 nd Edition, 1996.
3	Non-Conventional Energy Sources	G.D Rai	Khanna Publishers	2003
Referen	ce Books			
1	Renewable Energy Sources and Conversion Technology	N.K.Bansal, Manfred Kleeman&MechaelMeliss	Tata McGraw Hill.	2004
2	Renewable Energy Technologies	Ramesh R & Kumar K U	Narosa Publishing House New Delhi	
3	Conventional Energy Systems	K M, Non	Wheeler Publishing Co. Ltd., New Delhi	2003

4	Non-Conventional Energy	Ashok V Desai	Wiley Eastern Ltd, New	2003
			Deim	

B. E. MECHANICAL ENGINEERING				
Choice Based Credit	System (CBCS) and Outcome Base	d Education (OBE)		
	SEMESTER –VI			
OPEN ELECTIVE A				
WORLD CLASS MANUFACTURING				
Course Code	18ME652	CIE Marks	40	
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60	
Credits 03 Exam Hours 03				
Course Learning Objectives:				
• To understand the concept	of world class manufacturing, dy	mamics of materia	I flow, and Lean	
manufacturing.				
 To familiarize the students with 	n the concepts of Business excellen	ce and competitive	eness.	
To apprise the students with the students w	ne need to meet the current and fur	ture business challe	enges.	
To prepare the students to unc	lerstand the current global manufa	cturing scenario.		
Module-1				
Historical Perspective World class	Excellent organizations - Mod	els for manufact	uring excellence:	
Schonberger, Halls, Gunn and Maskell	models, Business Excellence.			
Module-2				
Benchmark, Bottlenecks and Best Pra-	ctices, Concepts of benchmarking,	Bottleneck and be	est practices, Best	
performers – Gaining competitive edg	ge through world class manufactu	ring – Value addeo	l manufacturing –	
Value Stream mapping – Eliminating w	aste –Toyota Production System –E	xample.		
Module-3				
System and Tools for World Class Man	nufacturing. Improving Product &	Process Design –	Lean Production –	
SQC, FMS, Rapid Prototyping, Poka Y	oke, 5-S,3 M, JIT, Product Mix ,	Optimizing , Proce	urement & stores	
practices, Total Productive maintenand	ce, Visual Control.			
Module-4				
Human Resource Management in V	VCM: Adding value to the organ	nization– Organiza	itional learning –	
techniques of removing Root cause of	f problems–People as problem sol	vers–New organiza	ational structures.	
Associates—Facilitators— Teamsmanship	p–Motivation and reward in the age	e of continuous imp	provement.	
Module-5				
Typical Characteristics of WCIVI Compa	nies Performance Indicators like PC	DP, TOPP and AMB	The systems – what	
Is world class Performance –Six Signa	oniiosophy. cturing – Task Aboad, Groon Manut	facturing Cloan ma	nufacturing Agilo	
manufacturing	cturing – rask Anead. Green Manu	acturing, clean ma	inulaciuning, Aglie	
Course Outcomes: At the end of the co	urse the student will be able to:			
CO1: Understand recent trends in r	manufacturing.			
CO2: Demonstrate the relevance a	nd basics of World Class Manufactu	iring		
CO3: Understand customization of	product for manufacturing			
CO3. Understand the implementation of product for manufacturing.				
COE. Compare the existing industries with MCM industries				
COS: Compare the existing industri	es with weivi industries.			
Question paper pattern:	full successions as we do a sound was also			
I he question paper will have ten full questions carrying equal marks.				
Each full question will be for 20 r	narks.			
There will be two full questions (with a maximum of four sub- quest	ions) from each mo	odule.	
• Each full question will have sub-	question covering all the topics und	ler a module.		
• The students will have to answer	five full questions, selecting one fu	Ill question from ea	ach module.	

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	ok/s			
1	World Class Manufacturing-	Sahay B.S.,	Mac Milan Publications	New Delhi
	Strategic Perspective	Saxena KBC. and		
		Ashish Kumar		
2	Just In Time Manufacturing	Korgaonkar M.G	MacMilan Publications	
Referen	nce Books			
1	Production and Operational	Adam and Ebert	Prentice Hall learning Pvt.	5th Edition
	Management		Ltd.	
2	The Toyota Way – 14 Management	Jeffrey K.Liker	Mc-Graw Hill	2003
	Principles			
3	Operations Management for	Chase Richard B.,	McGraw Hill Publications	11th Edition
	Competitive Advantage	Jacob Robert		2005
4	Making Common Sense Common	Moore Ron	Butterworth-Heinemann	2002
	Practice			
5	World Class Manufacturing- The	Schonberger R. J	Free Press	1986
	Lesson of Simplicity			

	B. E. MECHANICAL ENG	B. E. MECHANICAL ENGINEERING				
Choice Based Cr	edit System (CBCS) and Ou	tcome Based Education (O	BE)			
	SEMESTER –V	1				
Course Code			40			
Course Code	18IVIE653		40			
Teaching Hours/ Week (L:T:P)	3:0:0	SEE Marks	60			
Credits	03	Exam Hours	03			
Course Learning Objectives:	re of cupply chain parforms	unco and thair intor rolation	ching with stratogy			
To acquaint with key drive	rs of supply chain performa	ince and their inter-relation	iships with strategy.			
Io impart analytical and p	roblem-solving skills neces	sary to develop solutions fo	or a variety of supply			
chain management & desi	gn problems.					
 To study the complexity or 	f inter-firm and intra-firm	coordination in implement	ing programs such as			
e-collaboration, quick resp	onse, jointly managed inve	ntories and strategic alliand	ces.			
Module-1						
Introduction: Supply Chain – Fund	damentals – Evolution- Role	e in Economy - Importance	e - Decision Phases –			
Supplier Manufacturer-Customer	chain Enablers/ Driver	s of Supply Chain Perforr	mance. Supply chain			
strategy - Supply Chain Performan	ce Measures.					
Module-2						
Strategic Sourcing Outsourcing – I	Vake Vs buy - Identifying o	ore processes - Market Vs	Hierarchy - Make Vs			
buy continuum -Sourcing strategy	- Supplier Selection and Co	ntract Negotiation. Creating	g a world class supply			
base- Supplier Development - Wor	ld Wide Sourcing.					
Module-3						
Warehouse Management Stores	management-stores syster	ns and procedures-incomin	ng materials control-			
stores accounting and stock ver	rification Obsolete, surplu	s and scrap-value analysi	is-material handling-			
transportation and traffic manage	ement -operational efficier	ncy-productivity-cost effect	iveness-performance			
measurement.	Not of Destry Date					
Supply Chain Network Distributio	n Network Design – Role	- Factors Influencing Optio	ns, value Addition –			
Models	or Facility Location and C	apacity anocation. Distribu	tion Center Location			
Module-4						
Supply Chain Network ontimizati	on models. Impact of unc	ertainty on Network Desig	n - Network Design			
decisions using Decision trees Pla	anning Demand -multiple	item -multiple location inv	entory management			
Pricing and Revenue Management			entory management.			
Module-5	•					
Current Trends: Supply Chain II	ntegration - Building par	tnership and trust in Sur	only chain Value of			
Information: Bullwhip Effect -	Effective forecasting - Co	pordinating the supply ch	ain. Supply Chain			
restructuring. Supply Chain Ma	pping - Supply Chain p	rocess restructuring. Post	pone the point of			
differentiation – IT in Supply Chain	- Agile Supply Chains - Rev	erse Supply chain. Future of	IT in supply chain- E-			
Business in supply chain.	0					
Course Outcomes: At the end of th	ne course the student will b	e able to:				
CO1: Understand the framewo	ork and scope of supply cha	in management.				
CO2: Build and manage a com	petitive supply chain using	strategies, models, techniqu	ues and information			
technology.		•				
CO3: Plan the demand. invento	ory and supply and optimize	e supply chain network.				
CO4: Understand the emerging trends and impact of IT on Supply chain						
Question namer nattern:						
• The question paper will have	ten full questions corruing	equal marks				
- The question paper will have	20 marks	equal marks.				
Each full question will be for	zu marks.					
Iboro will be two full question	ne lwith a maximum of for					

- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textb	ook/s			
1	Supply Chain Management– Text and Cases	Janat Shah	Pearson Education	2009
2	Supply Chain Management- Strategy Planning and Operation	Sunil Chopra and Peter Meindl	PHI Learning / Pearson Education	2007
Refere	ence Books			
1	Business Logistics and Supply Chain Management	Ballou Ronald H	Pearson Education	5th Edition, 2007
2	Designing and Managing the Supply Chain: Concepts, Strategies, and Cases	David Simchi-Levi, Philip Kaminsky, Edith Simchi-Levi	Tata McGraw-Hill	2005
3	Supply Chain Management- Concept and Cases	Altekar Rahul V	PHI	2005
4	Modeling the Supply Chain	Shapiro Jeremy F	Thomson Learning	Second Reprint , 2002
5	Principles of Supply Chain Management- A Balanced Approach	Joel D. Wisner, G. Keong Leong, Keah- Choon Tan	South-Western, Cengage Learning	2008

B. E. MECHANICAL ENGINEERING Choice Based Credit System (CRCS) and Outsome Based Education (ORE)				
SEMESTER –VI				
OPEN ELECTIVE A				
	VANCED MATERIALS TECHN	IOLOGY		
Course Code	18ME654	CIE Marks	40	
Teaching Hours/Week (L:T:P)	3:0:0	SEE Marks	60	
Credits	03	Exam Hours	03	
Course Learning Objectives:				
 To impart knowledge on mater 	rial selection methods and ba	isics of advanced enginee	ring materials.	
 To introduce the basics of sma 	rt materials, composite mate	erials, ceramics and glasse	s and modern	
metallic materials and their ap	plications in engineering.			
Module-1				
Classification and Selection of Mate	erials: Classification of mat	erials, properties require	ed in Engineering	
materials, Selection of Materials; Moti	vation for selection, cost ba	sis and service requireme	nts - Selection for	
mechanical properties, strength, tough	nness, fatigue and creep - Se	election for surface durab	ility corrosion and	
wear resistance – Relationship betw	veen materials selection ar	nd processing - Case stu	idies in materials	
selection with relevance to aero, auto,	marine, machinery and nucl	ear applications.		
Module-2				
Composite Materials: Fiber reinforced	, laminated and dispersed m	naterials with metallic ma	trix of aluminium,	
copper and Titanium alloys and wit	h non-metallic matrix of	unsaturated polyesters a	and epoxy resins.	
Development, Important properties an	d applications of these mate	rials.		
Module-3				
Ceramics and Glasses - Bio-ceramics:	Nearly inert ceramics, bio-	eactive glasses and glass	ceramics, porous	
ceramics; Calcium phosphate ceramic	cs: grafts, coatings Physico-	chemical surface modification	ation of materials	
used in medicine.				
Low & High Temperature Materials: Pi	roperties required for low te	mperature applications, N	Materials available	
for low temperature applications, Re	quirements of materials for	r high temperature appli	cations, Materials	
available for high temperature applicat	tions, Applications of low and	high temperature mater	ials.	
Module-4				
Modern Metallic Materials: Dual Stee	els, Micro alloyed, High Strer	igth Low alloy (HSLA) Stee	el, Transformation	
Induced plasticity (TRIP) Steel, Maragin	ig Steel, inter metallics, NI ar	ia II Aluminiaes.	niauaa far Fihara	
Non-metallic Materials: Polymeric materials and their molecular structures, Production Techniques for Fibers,				
Modulo E	ure, Properties and Application	ons of Engineering Polyme	215.	
Smart Materials: Shape Memory Alloy	Naristors and Intelligent m	aterials for hio-medical ar	nlications	
Nanomaterials: Definition Types of na	nomaterials including carbo	n nanotubes and nanoco	mnosites Physical	
and mechanical properties. Applications of panomaterials				
Course Outcomes: At the end of the course, the student will be able to:				
CO1: Explain the concepts and principles of advanced materials and manufacturing processes				
CO2: Understand the applications of all kinds of Industrial materials				
CO3: Apply the material selection concents to select a material for a given application				
CO3. Apply the material selection concepts to select a material for a given application.				
CO4: Deline Nanotechnology, Describe nano material characterization.				
	id applications of smart mate	eriais, ceramics, glasses an	u non-metallic	
i se ata sia la				

- The question paper will have ten full questions carrying equal marks.
- Each full question will be for 20 marks.
- There will be two full questions (with a maximum of four sub- questions) from each module.
- Each full question will have sub- question covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

SI No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
Referen	Reference Books						
1	Engineering Material	James A. Jacobs &	Prentice Hall				
	Technology	Thomas F. Kilduff					
2	Materials Science and	WD. Callister Jr.	Wiley India Pvt.	2010			
	Engineering		Ltd				
3	Engineering Design: A	G.E. Dieter	McGraw Hill	1991			
	Materials and Processing						
	Approach						
4	Materials Selection in	M.F. Ashby	Pergamon Press	1992			
	Mechanical Design						
5	Introduction to Engineering	NIIT	Prentice Hall of				
	Materials & Manufacturing		India				
	Processes						
6	Engineering Materials	Kenneth G. Budinski	Prentice Hall of				
	Properties and Selection		India				
7	Selection of Engineering	Gladius Lewis	Prentice-Hall,				
	Materials		New Jersey				

B. E. MECHANICAL ENGINEERING						
		Choice Based Credit	System (CBCS) and Outco	ome Based Education (OBE)		
		COMPUT	FR AIDED MODELLING AN	ID ANALYSIS LAB		
Cours	Course Code 18MEL66 CIE Marks 40					
Teach	ning Hou	urs /Week (L:T:P)	0:2:2	SEE Marks	60	
Credi	ts		02	Exam Hours	03	
Cours	se Learı	ning Objectives:				
•	• Тоа	cquire basic understandin	g of Modeling and Analys	is software		
•	• To u	nderstand the concepts o	f different kinds of loadin	g on bars, trusses and beams	, and analyze the	
	resu	Its pertaining to various p	arameters like stresses an	d deformations.		
•	To le	ean to apply the basic prir	ciples to carry out dynam	ic analysis to know the natur	al frequencies of	
	diffe	erent kind of beams.				
SI.			Experiments	5		
No.						
1	Study	of a EEA nackago and mo	PARI A	of.		
	Study	Di a FEA package and mo	ation area tanarad cross	oction area and stanned have		
	a. h		varsises of different type	section area and stepped bar		
	D.	Poame Simply support	tercises of different type	sj th naint load UDL haams i	with varying load	
	ι.	etc. (Minimum 6 exercis	es)		with varying load	
	d.	Stress analysis of a recta	ngular plate with a circula	r hole.		
			PART B			
2	Therm	al Analysis – 1D & 2D pro	blem with conduction and	d convection boundary condi	tions (Minimum	
	4 exer	cises of different types)				
3	Dynam	ic Analysis to find:				
		a) Natural frequency of be	eam with fixed – fixed end	l condition	ion	
		b) Response of beam with	ted to forcing functions	ons subjected to forcing funct	lon	
			PART Clophy for dom			
4						
4	a.	Demonstrate the use of to solver.	graphics standards (IGES,	STEP etc) to import the mod	del from modeler	
	b. Demonstrate one example of contact analysis to learn the procedure to carry out contact analysis.				arry out contact	
	c. Demonstrate at least two different types of example to model and analyze bars or plates made from composite material				rs or plates made	
Course Outcomes: At the end of the course, the student will be able to:						
CO1: Use the modern tools to formulate the problem, create geometry, descritize, apply boundary conditions						
to						
solve problems of bars, truss, beams, and plate to find stresses with different-loading conditions.						
CO2: Demonstrate the ability to obtain deflection of beams subjected to point, uniformly distributed and						
varying loads and use the available results to draw shear force and bending moment diagrams.						
CO3: Analyze and solve 1D and 2D heat transfer conduction and convection problems with different boundary						
CO4: Carry out dynamic analysis and finding natural frequencies of beams, plates, and bars for various						
	boundary conditions and also carry out dynamic analysis with forcing functions.					

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.
- 3. Students can pick one experiment from the questions lot prepared by the examiners.
 - Scheme of Examination:

One Question from Part A - 40 Marks One Question from Part B - 40 Marks

Viva-Voce - 20 Marks

	B. E. MECHANICAL ENGINEERING Choice Based Credit System (CBCS) and Outcome Based Education (OBE)				
		SEMESTER - VI			
		HEAT TRANSFER LAI	3		
Cour	se Code	18MEL67	CIE Marks	40	
Teac	ning Hours/Week (L:T:P)	0:2:2	SEE Marks	60	
Cred	ts	02	Exam Hours	03	
Cour	se Learning Objectives:				
•	The primary objective of this o	course is to provide the fun	damental knowledge necessa	ary to	
	understand the behavior of th	ermal systems.			
•	This course provides a detailed	d experimental analysis, inc	cluding the application and he	eat transfer	
	through solids, fluids, and vac	uum.			
•	Convection, conduction, and r	adiation heat transfer in or	he and two dimensional stead	ly and unsteady	
SI.	systems are examined.	Experiments			
No.					
		PART A			
1	Determination of Thermal Cond	uctivity of a Metal Rod.			
2	Determination of Overall Heat T	ransfer Coefficient of a Co	mposite wall.		
3	Determination of Effectiveness on a Metallic fin.				
4	Determination of Heat Transfer	Coefficient in free Convect	ion		
5	Determination of Heat Transfer	Coefficient in a Forced Cor	ivention		
6	Determination of Emissivity of a	Surface.			
		PART B			
7	Determination of Stefan Boltzm	ann Constant.			
8	Determination of LMDT and Effe	ectiveness in a Parallel Flow	and Counter Flow Heat Exch	angers.	
9	Experiments on Boiling of Liquid	and Condensation of Vapo	our.	_	
10	Performance Test on a Vapour (Compression Refrigeration.			
11	11 Performance Test on a Vapour Compression Air – Conditioner.				
12	12 Experiment on Transient Conduction Heat Transfer.				
PART C (OPTIONAL)					
13	Analysis of steady and transient	heat conduction, tempera	ture distribution of plane wal	l and cylinder	
	using Numerical approach (ANS	YS/CFD package).			
14	Determination of temperature of	distribution along a rectang	ular and circular fin subjected	d to heat loss	
	through convection using Numerical approach (ANSYS/CFD package).				
Course Outcomes: At the end of the course, the student will be able to:					
CO1: Determine the thermal conductivity of a metal rod and overall heat transfer coefficient of composite					
siabs.					
theoretical values					
unconduction Values.					
cylinder experimentally.					
CO4: Determine surface emissivity of a test plate and Stefan Boltzmann constant					
CO5:	CO5: Estimate performance of a refrigerator and effectiveness of a fin and Double pipe heat exchanger				

Conduct of Practical Examination:

1. All laboratory experiments are to be included for practical examination.

2. Breakup of marks and the instructions printed on the cover page of answer script to be strictly adhered by the examiners.

3. Students can pick one experiment from the questions lot prepared by the examiners.

4. Change of experiment is allowed only once and 15% Marks allotted to the procedure part to be made

Scheme of Examination:

One Question from Part A - 40 Marks

One Question from Part B - 40 Marks

Viva-Voce - 20 Marks