K.S.INSTITUTE OF TECHNOLOGY, BANGALORE (AFFLIATED TO VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELGAUM)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGG.

ENGINEERING MATHEMATICS-IV

(Common to all Branches)

Course Title: Engineering Mathematics-IV 15MAT41Credits:04 Contact Hours/Week: 04 Exam. Marks:80 Exam. Hours: 03 Course Code: L-T-P:4-0-0 Total Hours:50 IA Marks:20

Modules	RBT
	Level
Module-1	
Numerical Methods : Numerical solution of ordinary differential equations of first order and first degree, Taylor's series method, modified Euler's method, Runge - Kutta method of fourth order. Milne's and Adams- Bashforth predictor and corrector methods (No derivations of formulae).	L1, L3
Module-2	
Numerical Methods: Numerical solution of second order ordinary differential equations, Runge-Kutta method and Milne'smethod.	
Special Functions: Series solution-Frobenious method. Series solution of Bessel's differential equation leading to $J_n(x)$ -Bessel's function of first kind. Basic properties and orthogonality. Series solution of Legendre's differential equation leading to $P_n(x)$ -Legendre polynomials. Rodrigue's formula, problems.	L3
Module-3	
Complex Variables: Review of a function of a complex variable, limits, continuity, differentiability. Analytic functions-Cauchy-Riemannequations in cartesian and polar forms. Properties and construction of analytic functions. Complex line integrals-Cauchy's theorem and Cauchy's integral formula, Residue, poles, Cauchy's Residue theorem (without proof) and problems.	L1, L3,
Transformations: Conformal transformations, discussion of transformations: $w \Box z^2$, $w \Box e^z$, $w \Box z \Box \Box 1$ $z \Box \Box z \Box 0 \Box$ and bilinear transformations- problems.	L3
Module-4	
Probability Distributions:Random variables (discrete and continuous), probability mass/density functions. Binomial distribution, Poisson	
distribution. Exponential and normal distributions, problems.	L3

Joint probability distribution: Joint Probability distribution for two discrete random variables, expectation, covariance, correlationcoefficient.	
Module-5	
Sampling Theory: Sampling, Sampling distributions, standard error, test of hypothesis for means and proportions, confidence limits for means, student's t-distribution, Chi-square distribution as a test of goodness of fit.	L3
Stochastic process: Stochastic processes, probability vector, stochastic matrices, fixed points, regular stochastic matrices, Markov chains, higher transition probability-simple problems.	L1
Course Outcomes: On completion of this course, students are ableto:	
• Apply Numerical methods to obtain the solution of first order and first degree differential equations.	
• Make use of probability theory on discrete and continuous random variables to obtain the solution of problems on different distributions and joint probability distribution.	
• Identify the problems on sampling distribution and on markov chains in attempting the engineering problems for feasible random events.	
• Utilize the Bessel and Legendre functions for the problems arising in engineering fields.	
• Construct the analytic functions. Calculate residues and poles of complex potentials in flow problems.	
Question paper pottorn:	
Question paper pattern:The question paper will have tenquestions.	
Each full Question consisting of 16marks	
 Therewillbe2fullquestions(withamaximumoffoursubquestions) from eachmodule. Eachfullquestionwillhavesubquestionscoveringallthetopics under amodule. 	
 Eachrunquestionwinnavesubquestionscoveringantietopics under antourie. Thestudentswillhavetoanswer5fullquestions, selectingonefull question from eachmodule. 	
Text Books: 1. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43 rd	
Ed., 2015.	

2. E. Kreyszig: Advanced Engineering Mathematics, John Wiley& Sons, 10thEd., 2015.

Reference Books:

- 1. N.P.Bali and Manish Goyal: A Text Book of Engineering Mathematics, Laxmi Publishers, 7thEd., 2010.
- 2. B.V.Ramana: "HigherEngineeringMathematics" TataMcGraw-Hill, 2006.
- 3. H. K. Dass and Er. RajnishVerma: "Higher EngineeringMathematics", S. Chand publishing, 1stedition, 2011.

Web Link and Video Lectures:

- 1. http://nptel.ac.in/courses.php?disciplineID=111
- 2. http://www.khanacademy.org/
- 3. http://www.class-central.com/subject/math

		ATHEMATICS - II		
	B.E., IV Semester, Co			
	(A Bridge course for Lateral I [As per Choice Based Cre			
			-	
Subject Code	15MATDIP41		IA Marks	
Number of Lecture Hours/Week	03		Exam marks	80
Total Number of Lecture Hours	40 (08 Hours per Module	e)		
	Credi	its – 00		
Course Objectives: This c	urse will enable students to:			
-	ial concepts of linearalgebra.			
	higher order differentialequation	one		
	ce and inverse Laplace transfor		robability theory	
	ce and inverse Laplace transfor	rins and elemental yp	robability theory.	
	Modules			RBT
				Level
	Module-1			
LinearAlgebra:Introduct	on-rankofmatrixbyelementaryr	owoperations		
	cy of system of linear equatior			
-	aluesandEigenvectorsofasquar			L1,L3
	milton theorem (without proof) to compute the inve	erse of a matrix-	
Examples.				
	Module-2			
	near differential equations of			
	nogeneous /non- homogeneou roblems. Method of undeterm			L1,L3
parameters.	abolemis. Method of undeterm	lifed coefficients and	variation of	L1,L3
parameters.				
	Module-3			
Laplace transforms		of element	ary functions.	
Transformsofderivativesa	ndintegrals, transforms of period		•	L1,L2
unit step function-Proble	as only.			
	Module-4			
	ns : Definition of inverse L			
	nethods. Application to solut	ions of Linear diffe	erential equations and	L1,L2
simultaneous differential				
equations.				
	Module-5			
	Samplespaceandevents. Axioms	1 V	1	1110
_	theorems.Conditionalprobabil	ity–illustrative	examples.	L1,L2
Bayes'stheorem-example				
Course Outcomes: On con	pletion of this course, students a	re able to:		
	equation sin the different areas of l			
	-	-	nirouite.	
 Solvesecondandhight damped/un-dampedy 	orderdifferentialequationsoccu	armgmor electrical (in cuits,	

damped/un-dampedvibrations.

	MICROPROCESS	ORS	
	[As per Choice Based Credit Syst		
	SEMESTER – IV (I	EC/TC)	
Subject Code	15EC42	IA Marks	20
Number of Lecture	04	Exam Marks	80
Hours/Week			0.2
Total Number of	50 (10 Hours per Module)	Exam Hours	03
Lecture Hours	CREDITS – 0	4	
Course objectives: This cou		4	
Familiarize basic archiProgram 8086 Microp	tecture of 8086microprocessor rocessor using Assembly LevelLangu	lage	
	dures in 8086Programs of16bitmicroprocessorwithmemorya	adperipheralching involving syst	emdesign
-	tureof8088,8087Coprocessorandothe		emdesign
• Onderstanduleareintee	tureoroooo,ooo/coprocessorandonie		
Modules			RBT Level
Module -1			-
8086PROCESSOR:Histor Architecture ($1.1 - 1.3$ of	ricalbackground(referReferenceBook Fext).	1), 8086 CPU	
Addressing modes, Machi 2.1, 3.2 ofText).	ne language instruction formats, Ma	chine coding the program (2.2,	L1, L2, L3
	7 8086: Data transfer and arithmeti f these instructions with example pro		
Module -2			
	ring manipulation instructions, Flag	manipulation and Processor	L1, L2, L3
control instructions, Illu	stration of these instructions with e , Assembly Language Programming	xample programs. Assembler	L1, L2, L3
Module -3			
Stack and Interrupts:Introductiontostack, Stackstructureof8086, ProgrammingforStack.Interrupts and InterruptServiceroutines,Interruptcycleof8086,NMI, INTR, Interruptprogramming, Passing parameters to procedures,Macros,Timing andDelays.(Chap. 4 of Text).		L1, L2, L3	
Module -4			

8086 Bus Configuration and Timings: Physical memory Organization, General Bus operation cycle, I/O addressingcapability,Specialprocessoractivities,Minimummode8086 systemandTimingdiagrams,MaximumMode8086systemandTiming diagrams. (1.4 to 1.9 ofText).	L1, L2, L3
Basic Peripherals and their Interfacing with 8086 (Part 1) : Static RAM Interfacing with 8086 (5.1.1), Interfacing I/O ports, PIO 8255, Modesofoperation–Mode-0andBSRMode,InterfacingKeyboardand 7-Segmentdigitsusing8255(Refer5.3,5.4,5.5ofText).	
Module 5	
Basic Peripherals and their Interfacing with 8086 (Part 2): InterfacingADC- 0808/0809,DAC-0800,StepperMotorusing8255 (5.6.1, 5.7.2, 5.8). Timer 8254 – Mode 0, 1, 2 & 3 and Interfacing programmes for these modes (refer 6.1 ofText).	L1, L2, L3
INT 21H DOS Function calls - for handling Keyboard and Display (refer Appendix-B of Text).	
Other Architectures: Architecture of 8088 (refer 1.10 upto 1.10.1 of Text) and Architecture of NDP 8087 (refer 8.3.1, 8.3.5 of Text).	
Von-Neumann&HarvardCPUarchitectureandCISC&RISCCPU architecture (refer Reference Book1).	
Course Outcomes: At the end of the course students will be able to:	
 Identify the different CPU architectures, 8086 Microprocessor architecture and addressing mod 	$\log of 8086$
• Make use of the instruction set and addressing modes of 8086 to develop assembly language pr	ograms
• Make use of stacks, interrupts to develop programs	
 Model the static memory chips, 8255 & 8254, and use of INT 21 DOS interrupt function calls t and display 	to handle keyboard
• Experiment with 8086 Microprocessor the ADC-0808, DAC-0800 and stepper motors using Pl	PI 8255 with 8086.
Question paper pattern:The question paper will have tenquestions.	
 Each full Question consisting of 16marks 	
• Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule.	

- $\bullet \quad Each full question will have subquestions covering all the topics under a module.$
- Thestudents will have to answer 5 full questions, selecting one full question from each module.

Reference Books:

- 1. Microprocessor and Interfacing Douglas V Hall, SSSP Rao, 3rdedition TMH,2012.
- Microcomputer systems-The 8086 /8088 Family –Y.C. Liu and A. Gibson, 2ndedition, PHI-2003.
- The 8086Microprocessor: Programming &InterfacingthePC Kenneth J Ayala, CENGAGE Learning,2011.
- 4. The Intel Microprocessor, Architecture, Programming and Interfacing-BarryB.Brey,6e,PearsonEducation/PHI,2003.

TextBook:

Advanced Microprocessorsand Peripherals - A.K. Ray and K.M. Bhurchandi, TMH, 3rdEdition, 2012, ISBN978-1-25-900613-5.

Web Link and Video Lectures:

1. https://www.coursera.org/courses?query=microprocessor

2. https://www.udemy.com/course/certificate-program-in-introduction-to-microprocessors/

	CONTROL S	YSTEMS		
[As per Choice Based Credit System (CBCS) scheme]				
	SEMESTER – I	IV (EC/TC)		
Subject Code	15EC43	IA Marks	20	
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of LectureHours	50(10 Hours per Module)	Exam Hours	03	
	CREDITS	S - 04		
 Understandvariousterr Learnhowtofindamath Know how to find tim Find the transfer funct 	atures, configurations and applicati ninologies and definitions for the co ematical model of electrical, mecha e response from the transferfunc	ontrolsystems. anicalandelectro- mechanicalsystems. tion.		
Modules Module -1			RBT Level	
IntroductiontoControlSys Differential equation of P MechanicalSystems,Elect	tems:TypesofControlSystems,Ef hysical Systems – ricalSystems,AnalogousSystems aphs:Transferfunctions,Blockdia	s.Block	L1, L2, L3	
Module -2				
TimeResponseoffeedbackcontrolsystems:Standardtestsignals,Unit step response of First and Second order Systems. Time response specifications, Time response specifications of second order systems, steadystateerrorsanderrorconstants.IntroductiontoPI,PDandPID Controllers (excludingdesign).L1, L2			L1, L2, L3	
Module -3	· · · · · · · · · · · · · · · · · · ·			
Stability,Routhstabilitycr	ots of stability, Necessary condit iterion,Relativestabilityanalysis: ,IntroductiontoRoot-LocusTech	moreon	L1, L2, L3	
Module -4				

Frequency domain analysis and stability: Correlationbetweentimeandfrequencyresponse,BodePlots, Experimental determination of transferfunction. IntroductiontoPolarPlots,(InversePolarPlotsexcluded)Mathematical preliminaries,NyquistStabilitycriterion,(Systemswithtransportation lagexcluded) Introductiontolead,lagandlead-lagcompensatingnetworks(excluding design).	L1, L2, L3
Module -5	
Introduction to Digital Control System: Introduction, Spectrum Analysis of Sampling process, Signal reconstruction, Difference equations. Introduction to State variable analysis: Introduction, ConceptofState,Statevariables&Statemodel,StatemodelforLinear Continuous & Discrete time systems,Diaganolisation.	L1, L2, L3
Course Outcomes: At the end of the course, the students will be ableto	
 Develop the mathematical model of mechanical / electrical systems and obtain its transfer fur using block reduction method /Signal flow graph method Ability to relate transient performance parameters (overshoot, rise time, peak time and settlin the given system and to evaluate steady state error. Identify various stability criteria and Determine the stability of a system in the time domain u Routh-Hurwitz criterion and Root-locus technique. Determine the stability of a system in the frequency domain using Nyquist and bode plots Develop a control system model in continuous and discrete time using state variable technique 	g time) for sing
 Question paper pattern: The question paper will have tenquestions. Each full Question consisting of 16marks Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule. Eachfullquestionwillhavesubquestionscoveringallthetopicsundera module. Thestudentswillhavetoanswer5fullquestions,selectingonefullquestion from eachmodule. 	
TextBook: J.NagarathandM.Gopal,"ControlSystemsEngineering",NewAgeInternational (P) Limited, Publishers, Fifth edition-2005, ISBN:81-224-2008-7.	
Reference Books:	
 "Modern Control Engineering," K.Ogata, Pearson Education Asia/PHI, 4thEdition, 2002 81-203-4010-7. 	. ISBN978-
2. "Automatic Control Systems", Benjamin C. Kuo, John Wiley India Pvt. Ltd., 8 th Edition,	2008.
 "Feedback and Control System," Joseph J Distefano III et al., Schaum's Outlines, TMH, 2ndEdition2007. 	

Web Link and Video Lectures:

https://www.udemy.com/topic/control-systems/
 https://www.coursera.org/courses?query=control%20systems

	SIGNALS AND SYSTEM		
	[As per Choice Based Credit System (C SEMESTER – IV (EC/TC		
Subject Code	15EC44	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of LectureHours	50(10 Hours per Module)	Exam Hours	03
	CREDITS – 04		
 Analyzethesignalsintin Classifysignalsintodiff AnalyzeLinearTimeIn 	aticaldescriptionofcontinuousanddiscretetin nedomainusingconvolutiondifference/differ ferentcategoriesbasedontheirproperties. variant(LTI)systemsintimeandtransformdon andingofcoursessuchassignalprocessing,cor	rential equations mains.	ation.
	Modules		RBT Level
Module -1			
Introduction and Classification of signals: Definition of signal and systems, communication and control systems as examples.Sampling of analog signals, Continuous time and discrete time signal, Classification of signals as even, odd, periodic and non- periodic, deterministic and non-deterministic, energy andpower. Elementary signals/Functions: Exponential, sine, impulse, step and its properties, ramp, rectangular, triangular, signum, sync functions. Operations on signals: Amplitude scaling, addition, multiplication, differentiation, integration (Accumulator for DT), time scaling, time shifting and time folding. Systems:Definition,Classification:linearandnon-linear,timevariant andinvariant,causalandnon-causal,staticanddynamic,stableand unstable,invertible.			L1, L2, L3
outputrelation, definition of computation of convolution step to unit step, unit step	entation of LTI System: Syste impulseresponse, convolutionsum, co on integral and convolution sum using gr to exponential, exponential to exponential alar only. Properties of convolution.	nvolution integral, raphical method for unit	L1, L2, L3
Module -3			I

Module -4 Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals - FT, definition, FT of standard CT signals, Properties and their significance (4 Hours). FT representation of aperiodic discrete signals-DTFT , definition, DTFT of standard discrete signals, Properties and their significance (4Hours). Impulse sampling and reconstruction: Sampling theorem (only statement) and reconstruction of signals (2 Hours). Module -5 Z-Transforms: Introduction, the Z-transform, properties of the Region of convergence, Properties of the Z-Transform, Inversion of the Z- Transform, Transform analysis of LTI systems. Course Outcomes: At the end of the course, students will be ableto: Identify different types of signals (continuous/discrete, periodic/aperiodic, even /odd, energy/power and deterministic/random signals.) Identify the linearity, causality, time-invariance and stability properties of continuous and discrete time systems. Solve the response of a Continuous and Discrete LTI system using convolution integral and convolution sum.		
Fourier Representation of aperiodic Signals: L1, L2, L FT representation of aperiodic CT signals - FT, definition, FT of standard CT signals, Properties and their significance (4 Hours). L1, L2, L FTrepresentation of aperiodic discrete signals-DTFT , definition, DTFT of standard discrete signals, Properties and their significance (4Hours). L1, L2, L Impulse sampling and reconstruction: Sampling theorem (only statement) and reconstruction of signals (2 Hours). L1, L2, L Module -5 Z-Transforms: Introduction, the Z-transform, properties of the Region of convergence, Properties of the Z-Transform, Inversion of the Z- Transform, Transform analysis of LTI systems. L1, L2, L Course Outcomes: At the end of the course, students will be ableto: L1, L2, L Identify different types of signals (continuous/discrete, periodic/aperiodic, even /odd, energy/power and deterministic/random signals.) Identify the linearity, causality, time-invariance and stability properties of continuous and discrete time systems. Solve the response of a Continuous and Discrete LTI system using convolution integral and convolution sum. Solve the spectral characteristics of continuous and transfer functions of complex LTI systems. Question paper pattern: The question paper will have tenquestions. Each full Question consisting of 16marks Therewillbe2fullquestions/(withamaximumofThreesubquestions)from eachmodule. EachfullQuestionswillhavesubquestions.selectingonefullque		
FT representation of aperiodic CT signals - FT, definition, FT of standard CT signals, Properties and their significance (4 Hours). FTrepresentation of aperiodic discrete signals-DTFT , definition, DTFT of standard discrete signals, Properties and their significance (4Hours). Impulse sampling and reconstruction: Sampling theorem (only statement) and reconstruction of signals (2 Hours). Module -5 Z-Transforms: Introduction, the Z-transform, properties of the Region of convergence, Properties of the Z-Transform, Inversion of the Z- Transform, Transform analysis of LTI systems. Course Outcomes: At the end of the course, students will be ableto: Identify different types of signals (continuous/discrete, periodic/aperiodic, even /odd, energy/power and deterministic/random signals.) Identify the linearity, causality, time-invariance and stability properties of continuous and discrete time systems. Solve the response of a Continuous and Discrete LTI system using convolution integral and convolution sum. Solve the spectral characteristics of continuous and discrete time signal using Fourier analysis. Solve the spectral characteristics of continuous and transfer functions of complex LTI systems. Question paper pattern: The question paper will have tenquestions. Each full Question consisting of 16 marks Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule. Eachfullquestionwillhavesubquestions, selecting onefullquestion	Module -4	
 Z-Transforms: Introduction, the Z-transform, properties of the Region of convergence, Properties of the Z-Transform, Inversion of the Z- Transform, Transform analysis of LTI systems. Course Outcomes: At the end of the course, students will be ableto: Identify different types of signals (continuous/discrete, periodic/aperiodic, even /odd, energy/power and deterministic/random signals.) Identify the linearity, causality, time-invariance and stability properties of continuous and discrete time systems. Solve the response of a Continuous and Discrete LTI system using convolution integral and convolution sum. Solve the spectral characteristics of continuous and discrete time signal using Fourier analysis. Solve Z-transforms, inverse Z-transforms and transfer functions of complex LTI systems. 	Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals - FT, definition, FT of standard CT signals, Properties and their significance (4 Hours). FT representation of aperiodic discrete signals-DTFT, definition, DTFT of standard discrete signals, Properties and their significance (4Hours). Impulse sampling and reconstruction: Sampling theorem (only statement) and reconstruction of signals (2 Hours).	L1, L2, L3
 Z-Transforms: Introduction, the Z-transform, properties of the Region of convergence, Properties of the Z-Transform, Inversion of the Z- Transform, Transform analysis of LTI systems. Course Outcomes: At the end of the course, students will be ableto: Identify different types of signals (continuous/discrete, periodic/aperiodic, even /odd, energy/power and deterministic/random signals.) Identify the linearity, causality, time-invariance and stability properties of continuous and discrete time systems. Solve the response of a Continuous and Discrete LTI system using convolution integral and convolution sum. Solve the spectral characteristics of continuous and discrete time signal using Fourier analysis. Solve Z-transforms, inverse Z-transforms and transfer functions of complex LTI systems. 	Module -5	
 Identify different types of signals (continuous/discrete, periodic/aperiodic, even /odd, energy/power and deterministic/random signals.) Identify the linearity, causality, time-invariance and stability properties of continuous and discrete time systems. Solve the response of a Continuous and Discrete LTI system using convolution integral and convolution sum. Solve the spectral characteristics of continuous and discrete time signal using Fourier analysis. Solve Z-transforms, inverse Z-transforms and transfer functions of complex LTI systems. Question paper pattern: The question paper will have tenquestions. Each full Question consisting of 16marks Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule. Eachfullquestion willhavesubquestionscoveringallthetopicsundera module. Thestudents willhavetoanswer5fullquestions, selecting onefullquestion 	Z-Transforms: Introduction, the Z-transform, properties of the Region of convergence, Properties of the Z-Transform, Inversion of the Z- Transform, Transform analysis of LTI systems.	L1, L2, L3
 deterministic/random signals.) Identify the linearity, causality, time-invariance and stability properties of continuous and discrete time systems. Solve the response of a Continuous and Discrete LTI system using convolution integral and convolution sum. Solve the spectral characteristics of continuous and discrete time signal using Fourier analysis. Solve Z-transforms, inverse Z-transforms and transfer functions of complex LTI systems. 	Course Outcomes: At the end of the course, students will be ableto:	
 systems. Solve the response of a Continuous and Discrete LTI system using convolution integral and convolution sum. Solve the spectral characteristics of continuous and discrete time signal using Fourier analysis. Solve Z-transforms, inverse Z-transforms and transfer functions of complex LTI systems. Question paper pattern: The question paper will have tenquestions. Each full Question consisting of 16marks Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule. Eachfullquestion willhavesubquestionscoveringallthetopicsundera module. Thestudents willhavetoans wer5fullquestions, selecting onefullquestion 		er and
 Solve the spectral characteristics of continuous and discrete time signal using Fourier analysis. Solve Z-transforms, inverse Z-transforms and transfer functions of complex LTI systems. Question paper pattern: The question paper will have tenquestions. Each full Question consisting of 16marks Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule. Eachfullquestion willhavesubquestionscoveringallthetopicsundera module. Thestudentswillhavetoanswer5fullquestions, selecting onefullquestion 		time
 The question paper will have tenquestions. Each full Question consisting of 16marks Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule. Eachfullquestionwillhavesubquestionscoveringallthetopicsundera module. Thestudentswillhavetoanswer5fullquestions,selectingonefullquestion 	• Solve the spectral characteristics of continuous and discrete time signal using Fourier analysis.	olution sum.
 The question paper will have tenquestions. Each full Question consisting of 16marks Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule. Eachfullquestionwillhavesubquestionscoveringallthetopicsundera module. Thestudentswillhavetoanswer5fullquestions,selectingonefullquestion 		
 The question paper will have tenquestions. Each full Question consisting of 16marks Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule. Eachfullquestionwillhavesubquestionscoveringallthetopicsundera module. Thestudentswillhavetoanswer5fullquestions,selectingonefullquestion 	Question paper pattern:	
 Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule. Eachfullquestionwillhavesubquestionscoveringallthetopicsundera module. Thestudentswillhavetoanswer5fullquestions,selectingonefullquestion 	• The question paper will have tenquestions.	
 Eachfullquestion willhavesubquestion scovering all the topic sunder a module. The students will have to answer 5 full questions, selecting one full question 		
• Thestudents will have to answer 5 full questions, selecting one full question		

51-239-4.

Reference Books:

- 1. Michael Roberts, "Fundamentals of Signals & Systems", 2nd edition, Tata McGraw-Hill, 2010, ISBN 978-0-07-070221-9.
- 2. Alan V Oppenheim, Alan S, Willskyand A Hamid Nawab, "Signals and Systems" Pearson Education Asia / PHI, 2nd edition, 1997. Indian Reprint2002.
- 3. H. P Hsu, R. Ranjan, "Signals and Systems", Scham's outlines, TMH, 2006.
- 4. B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2005.
- 5. Ganesh Rao and Satish Tunga, "Signals and Systems", Pearson/Sanguine Technical Publishers, 2004.

Web Link and Video Lectures:

1. https://www.classcentral.com/course/swayam-principles-of-signals-and-systems

2. https://freevideolectures.com/subject/signals-systems/

	<u>CIPLES OF COMMUNICATION SY</u> Choice Based Credit System (CBCS SEMESTER – IV (EC/TC)		
Subject Code	15EC45	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50(10 Hours per Module)	Exam Hours	03
	CREDITS – 04		
 Designsimplesystemsforgeneratinga UnderstandtheconceptsinAnglemod Designsimplesystemsforgeneratinga Learn the concepts of random proce Evaluatetheperformanceofthecomm Analyze pulse modulation and samp 	ulationforthedesignofcommunicatio anddemodulatingfrequencymodulate ass and varioustypes of noise. unicationsysteminpresenceofnoise.	n systems.	
	Modules		RBT Level
Module – 1 AMPLITUDE MODULATION: Introducti description, Switching modulator, Envelop		Frequency – Domain	L1, L2, L3
DOUBLE SIDE BAND-SUPPRESSED CA Frequency – Domain description, Ring m Carrier Multiplexing. SINGLE SIDE–BAND AND VESTIGIAL	nodulator, Coherent detection, Costa	as Receiver, Quadrature	
MODULATION: SSB Modulation, VS Multiplexing, Theme Example: VSB Tra ofText).	B Modulation, FrequencyTranslation		
Module – 2			1
ANGLE MODULATION: Basic definit FM, Transmission bandwidth of FM S Signals, FM Stereo Multiplexing, Phase PLL, Nonlinear Effects in FM Systems.	ignals, Generation of FM Signals –Locked Loop: Nonlinear model o	, Demodulation of FM f PLL, Linear model of	L1, L2, L3
Module – 3			

RANDOM VARIABLES &PROCESS : Introduction, Probability, Conditional Probability, Random variables, Several Random Variables. Statistical Averages: Function of a random variable, Moments, Random Processes, Mean, Correlation and Covariance function: Properties of autocorrelation function, Cross-correlation functions (refer Chapter 5 of Text). NOISE: Shot Noise, Thermal noise, White Noise, Noise Equivalent Bandwidth(referChapter5ofText),NoiseFigure(referSection6.7ofText).	L1, L2, L3
Module – 4	
NOISE IN ANALOG MODULATION: Introduction, Receiver Model, NoiseinDSB- SCreceivers,NoiseinAMreceivers,Thresholdeffect,Noisein FM receivers, Capture effect, FM threshold effect, FM thresholdreduction, Pre-emphasisandDe- emphasisinFM(referChapter6ofText).	L1, L2, L3
Module – 5	
DIGITAL REPRESENTATION OF ANALOG SIGNALS: Introduction, Why Digitize Analog Sources?, The Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse-Position Modulation, Generation of PPM Waves, Detection of PPM Waves, The Quantization Process, Quantization Noise, Pulse–Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing (refer Chapter 7 of Text), Application to Vocoder (refer Section 6.8 of Reference Book 1).	L1, L2, L3
Course Outcomes: At the end of the course, students will be able to:	
• Apply the time and frequency domain knowledge for the generation and demodulation of amplitude modulated signals.	
• Identify the performance of different generation and detection methodologies of AM, FM and multiplexing.	
• Utilize analog signals in time domain as random processes and identify the types of basic Noise	
• Identify the influence of noise in receivers of analog modulated signals	
Compare the characteristics of pulse modulation techniques	
Question paper pattern:The question paper will have tenquestions.	
 Each full Question consisting of 16marks. 	
• Therewillbe2fullquestions(withamaximumofThreesubquestions)fromeach module.	
 Eachfullquestion willhavesubquestionscovering all the topics under a module. The students will have to answer 5 fullquestions, selecting one fullquestion from each module. 	
Text Book:	
Communication Systems, Simon Haykins&Moher, 5th Edition, John Willey, India Pvt. Ltd, 2010 ISBN 978 - 81 - 265 - 2151 - 7. Reference Books:),
Reference DOOKS.	

- 1. Modern Digital and Analog Communication Systems, B. P. Lathi, Oxford University Press., 4thedition.
- 2. An Introduction to Analog and Digital Communication , Simon Haykins, John Wiley India Pvt. Ltd., 2008, ISBN 978–81–265–3653–5.
- 3. PrinciplesofCommunicationSystems,H.Taub&D.L.Schilling,TMH, 2011.
- 4. CommunicationSystems, HaroldP.E, SternSamyandA.Mahmond, Pearson Edition, 2004.
- 5. Communication Systems : Analog and Digital, R.P.Singh and S.Sapre: TMH 2ndedition, 2007.

Web Link and Video Lectures: 1. https://swayam.gov.in/nd1_noc19_ee46/preview 2. https://www.udemy.com/course/analog-communication/

LINEAR INTEGRATED CIRCUITS [As per Choice Based Credit System (CBCS) scheme] SEMESTER – IV (EC/TC)					
Subject Code15EC46IA Marks20					
Number of Lecture 04 Exam Marks 80					
Hours/Week					
Total Number of	50(10 Hours per Module)	Exam Hours	03		
Lecture Hours					
	CREDITS – 04				

Course objectives: This course will enable students to:

- DefineanddescribevariousparametersofOp-Amp,itscharacteristicsand specifications.
- Discuss the effects of Input and Output voltagerange supon Op-Ampcircuits.
- SketchandAnalyzeOp-AmpcircuitstodetermineInputImpedances,output Impedances and other performanceparameters.
- SketchandExplaintypicalFrequencyResponsegraphsforeachoftheFiltercircuits showingButterworthandChebyshevresponseswhereeverappropriate.
- DescribeandSketchthevariousswitchingcircuitsofOp-Ampsandanalyzeits operations.
- DifferentiatebetweenvarioustypesofDACsandADCsandevaluatetheperformance of each with neat circuit diagrams and assuming suitable inputs.

Modules	RBT
	Level
Module -1	
Operational AmplifierFundamentals:	L1, L2,L3
Basic Op-amp circuit, Op-Amp parameters – Input and output voltage, CMRR and PSRR, offset voltages and currents, Input and output impedances, Slew rate and Frequency limitations. OP-Amps as DC Amplifiers – Biasing OP-amps, Direct coupled voltage followers, Non- inverting amplifiers, inverting amplifiers, Summing amplifiers, and Difference amplifiers. Interpretation of OP-amp LM741 & TL081 datasheet.(Text1)	
Module -2	I
Op-Amps as AC Amplifiers: Capacitor coupled voltage follower, High inputimpedance– Capacitorcoupledvoltagefollower, Capacitorcoupled non inverting amplifiers, High input impedance – Capacitor coupledNon inverting amplifiers, Capacitor coupled inverting amplifiers, setting the uppercut-offfrequency, Capacitorcoupleddifferenceamplifier. OP-Amp Applications: Voltage sources, current sources and current sinks, current amplifiers, instrumentation amplifier, precision rectifiers.(Text1)	L1, L2,L3
Module-3	

More Applications : Limiting circuits, Clamping circuits, Peakdetectors, Sample and hold circuits, V to I and I to V converters, Differentiating Circuit, Integrator Circuit, Phase shift	L1, L2,L3
oscillator, Wien bridge oscillator, Crossing detectors, inverting Schmitt trigger. (Text 1)	
Log and antilog amplifiers, Multiplier and divider. (Text2)	

ActiveFilters:FirstorderandsecondorderactiveLow-passandhighpass filters, Bandpass Filter, BandstopFilter. (Text 1) Voltage Regulators: Introduction, Series Op-amp regulator, IC voltage regulators. 723 general purpose regulators. (Text 2)	L1, L2,L3
Module -5 Phase locked loop: Basic Principles, Phase detector/comparator, VCO. DAC and ADC convertor: DAC using R-2R, ADC using Successive approximation. Other IC Application: 555 timer, Basic timer circuit, 555 timer used as astable and monostablemultivibrator.	L1, L2,L3
 (Text 2) Course Outcomes: After studying this course, students will be able to: Identify Op-amp circuit and parameters including CMRR, PSRR, Input & Output Impedances and Slew Rate. Construct Op-amp based AC Amplifiers and Develop circuits for Op-amp based Voltage Sinks, Current, Instrumentation and Precision Amplifiers. Develop circuits for Op Amp based linear and non-linear circuits comprising of limiting, clamp Differentiator / Integrator Circuits, Peak Detectors ,Oscillators and Multiplier & Divider. Design first & Second Order Filters and Voltage Regulators. Illustrate applications of linear ICs in phase detector, VCO, DAC, ADC and Timer. 	
Question paper pattern: • The question paper will have tenquestions. • Each full Question consisting of 16marks. • Therewillbe2fullquestions(withamaximumofThreesubquestions)fromeach module. • Eachfullquestion willhavesubquestionscoveringallthetopicsunderamodule. • Thestudentswillhavetoanswer5fullquestions, selectingonefullquestionfrom eachmodule.	

TextBooks:

- 1. "OperationalAmplifiersandLinearIC's", DavidA.Bell, 2ndedition, PHI/Pearson, 2004. ISBN 978-81-203-2359-9.
- 2. "LinearIntegratedCircuits", D.RoyChoudhuryandShailB.Jain, 4thedition, Reprint 2006, New Age International ISBN 978-81-224-3098-1.

Reference Books:

- 1. RamakantAGayakwad, "Op-AmpsandLinearIntegratedCircuits", Pearson, 4th Ed, 2015. ISBN 81-7808-501-1.
- 2. BSomanathanNair, "LinearIntegratedCircuits:Analysis,Design& Applications," Wiley India, 1st Edition,2015.
- 3. JamesCox, "LinearElectronicsCircuitsandDevices", CengageLearning, Indian Edition, 2008, ISBN-13:978-07-668-3018-7.
- 4. Data Sheet:http://www.ti.com/lit/ds/symlink/tl081.pdf.

Web Link and Video Lectures:

1. https://e-box.co.in/linear-integrated-circuits.shtml

2. https://freevideolectures.com/course/2915/linear-integrated-circuits

	MICROPROCESSOR LA	BORATORY	
	[As per Choice Based Credit Syst	em (CBCS) scheme]	
	SEMESTER – IV (E	EC/TC)	
Laboratory Code	15ECL47	IA Marks	20
Number of Lecture Hours/Week	01Hr Tutorial (Instructions) + 02 Hours Laboratory	Exam Marks	80
RBT Level	L1, L2, L3	Exam Hours	03
	CREDITS – 02	2	
• Developandtestasse	086instructionsandDOS21Hinterrupt mblylanguageprogramstouseinstructi nterfacingofvariousperipheraldevices	onsof8086.	or
Laboratory Experiments:			
1. Programs involving:			
Data transfer instructions lik i) Byte and word data tran ii) Block move (with and iii) Block interchange	nsfer in different addressingModes		
2. Programs involving :			
•	on of multi precisionnos. ionofsignedandunsignedHexadecima	lnos.	
3. Programs involving:			
Bit manipulation instruction i) Whether given data is p ii) Whethergivendataisodo iii) Logical1'sand0'sinagiv iv) 2 out 5code v) Bit wise and nibble wise	oositive ornegative loreven vendata		
4. Programs involving:			
Branch/ Loop instructions li	ke		
descendingorder.	ctionofNnos.,FindinglargestandsmallensusingProceduresandMacros(Subro	-	

5. Programs involving

String manipulation like string transfer, string reversing, searching for a string.

6. Programs involving

 $\label{eq:programstouse} Programstouse DOS interrupt INT 21 h Function calls for Reading a Character from keyboard, Buffered Keyboard input, Display of character/String on console.$

7. Interfacing Experiments :

Experimentsoninterfacing8086withthefollowinginterfacingmodulesthroughDIO (DigitalInput/Output-PCIbuscompatiblecard/8086Trainer)

- 1. Matrix keyboardinterfacing
- 2. Seven segment displayinterface
- 3. Logical controllerinterface
- 4. Stepper motorinterface
- 5. ADC and DAC Interface (8bit)

6. Lightdependentresistor(LDR),Relayand switches

BuzzerInterfacetomakelight operated

Course Outcomes: On the completion of this laboratory course, the students will be able to:

- Identify the different CPU architectures, 8086 Microprocessor architecture and addressing modes of 8086.
- Make use of the instruction set and addressing modes of 8086 to develop assembly language programs
- Make use of stacks, interrupts to develop programs.
- Model the static memory chips, 8255 & 8254, and use of INT 21 DOS interrupt function calls to handle keyboard and display
- Experiment with 8086 Microprocessor to interface the ADC-0808, DAC-0800 and stepper motor using PPI 8255.

Conduct of Practical Examination:

- $\bullet \ \ All laboratory experiments are to be included for practical examination.$
- Forexamination, onequestion from software and onequestion from hardware interfacing to beset.
- Students are allowed to pick one experiment from thelot.
- ChangeofexperimentisallowedonlyonceandMarksallottedtotheprocedure part to be madezero.

	LINEAR ICS AND COMMU		
	As per Choice Based Credit Sys SEMESTER – IV		
		· · ·	
Laboratory Code	15ECL48	IA Marks	20
Number of Lecture Hours/Week	01Hr Tutorial (Instructions) + 02 Hours Laboratory	Exam Marks	80
RBT Level	L1, L2, L3	Exam Hours	03
Courseobjectives:	CREDITS –	02	
Design,DemonsDesign,Demons	trateandAnalyzemultivibratorsandoscilla trateandAnalyzeanalogsystemsforAM,FN trateandAnalyzebalancemodulationandfr d Analyze pulse sampling and flat topsar	AandMixer operations. equencysynthesis.	
Laboratory Experiments: 1.Designaninstrumentati	onamplifierofadifferentialmodegainof ^A	usingthree amplifiers.	
2. Design of RC Phase s	hift and Wien's bridge oscillators using (Op-amp.	
3. Design active second	order Butterworth low pass and high pas	s filters.	
4.Design4bitR-2ROp-A fromtoggleswitchesand(mpDigitaltoAnalogConverter(i)using4bi ii)bygeneratingdigitalinputsusingmod-16	tbinaryinput counter.	
5. Design Adder, Integra	ator and Differentiator using Op-Amp.		
6. Design of Monostable	e and AstableMultivibratorusing 555 Tim	ier.	
7. Demonstrate Pulse sa	mpling, flat top sampling and reconstruct	ion.	
8. Amplitude modulation	n using transistor/FET (Generation and d	etection).	
9. Frequency modulation	n using IC 8038/2206 and demodulation		
10. Design BJT/FET Mi	xer.		
1.DSBSC generation us	ing Balance Modulator IC 1496/1596.		
12. Frequency synthesis u	ising PLL		

12. Frequency synthesis using PLL.

Conduct of Practical Examination:

- $\bullet \quad All laboratory experiments are to be included for practical examination.$
- Students are allowed to pick one experiment from thelot.
- ChangeofexperimentisallowedonlyonceandMarksallottedtotheprocedure part to be madezero.

Course Outcomes: This laboratory course enables students to:

- Inspect the basic analog systems for a given specification using the basic building blocks and ICs.
- Examine the performance of instrumentation amplifier, LPF, HPF, DAC and oscillators using linear IC.
- Analyze with Linear ICs for applications like addition, integration, differentiation and 555 timer operations to generate pulses.
- Test for pulse and flat top sampling techniques.
- Experiment with Amplitude and Frequency Modulation techniques to find the percentage of modulation and use PLL to synthesize the Frequency.

B.E E&C SIXTH SEMESTERSYLLABUS

DIGITALCOMMUNICATION

B.E., VI Semester, Electronics &Communication Engineering/ TelecommunicationEngineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC61	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50 (10Hours/Module)	Exam Hours	03	
Lecture Hours				
	CRE	DITS - 04		
Course Objectives: The ob	jectives of the course is to ena	ble students to:		
• Apply the concept receiver functional	lblocks. ance issues and parameters for	ools and signal process	and channels. ing to symbols in transmitter nd recovery in ideal and corr	
• Compute pert	formance parameters forted channelconditions.	and mitigate	for these parameters	in
	Modul	e_1		RBT
	Widdu			Level
Canonical representation Complex representation 2.11, 2.12, 2.13).	ivalent Low pass: Hilbert T of bandpass signals, Compl of band pass signals and syst Polar, Bipolar (AMI) and Ma ZS, B6ZS (Ref. 1: 7.2)	ex low pass representations (Text 1: 2.8, 2.9, 2	ation of bandpass systems, 2.10,	L1, L2, L3
		Module-2		·
Orthogonalization continuous AWGN chann	hannels-Introduction,Geome procedure, elintoavectorchannel,Optimu cceiver, matched filter receive	Conversion mreceiversusing co	signals, Gram-Schmidt of the herent detection: ML ,7.4).	L1, L2, L3
	Modul	le-3		
	nniques : Phase shift Keying abilities of BPSK and QPSF			
Frequency shift keying t	echniques using Coherent det	ection: BFSK		

generation, detection and error probability (Relevant topics in Text 1 of 7.8).

Non coherent orthogonal modulation techniques: BFSK, DPSK Symbol representation, Block diagrams treatment of Transmitter and Receiver, Probability of error (without derivation of probability of error equation)(Text 1: 7.11, 7.12.7.13).

Module-4	
Communication through Band Limited Channels : Digital Transmission through Band limited channels: Digital PAM Transmission through Band limited Channels, Signal design for Band limited Channels: Design ofband limitedsignalsforzeroISI–TheNyquistCriterion(statementonly),Designof band limited signals with controlled ISI-Partial Response signals, Probability of error for detection of Digital PAM: Probability of error for detectionofDigitalPAMwithZeroISI,Symbol–by–Symboldetectionofdata with controlled ISI (Text 2: 9.1, 9.2, 9.3.1,9.3.2).	L1, L2, L3
ChannelEqualization:LinearEqualizers(ZFE,MMSE),AdaptiveEqualizers (Text 2:9.4.2).	
Module-5	
Principles of Spread Spectrum: Spread Spectrum Communication Systems: Model of a Spread	L1, L2, L3
Spectrum Digital Communication System, Direct Sequence Spread Spectrum Systems, Effect of De-spreading on a narrowband Interference, Probability of error (statement only), Some applications of DS Spread Spectrum Signals, Generation of PN Sequences,	21, 22, 20
FrequencyHoppedSpreadSpectrum,CDMAbasedonIS-95(Text2:11.3.1, 11.3.2, 11.3.3, 11.3.4, 11.3.5,11.4.2).	
Course Outcomes: At the end of the course, the students will be ableto:	
 Develop the concepts of Band pass sampling to well specified signals and channels. Utilize performance parameters and transfer rates for low pass and bandpass symbol under ideal an non band limited channels. 	nd corrupted
 Identify valid symbol processing and performance parameters at the receiver under ideal ar bandlimited channels. 	d corrupted
• Identify the bandpass signals when subjected to corruption and distortion during transmiss bandlimited channel.	sion over a
• Identify the need for data security using spread spectrum technique and error rate calculation.	
Question paper pattern:	
• The question paper will have tenquestions	
• Each full question consists of 16marks.	
• Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule.	
• Eachfullquestion will have subquestions covering all the topics under a module	
• The students will have to answer 5 full questions, selecting one full question from eachmodule	
Text Books:	

- 1. Simon Haykin, "Digital Communication Systems", John Wiley & sons, First Edition, 2014, ISBN 978-0-471-64735-5.
- 2. John G Proakis and Masoud Salehi, "Fundamentals of Communication Systems",2014Edition,PearsonEducation,ISBN978-8-131-70573-5.

Reference Books:

- B.P.Lathi and Zhi Ding, "Modern Digital and Analog communication Systems", Oxford University Press, 4thEdition, 2010, ISBN:978-0-198-07380-2.
- 2. IanAGloverandPeterMGrant, "DigitalCommunications", PearsonEducation, Third Edition, 2010, ISBN 978-0-273-71830-7.
- John G Proakis and MasoudSalehi, "Communication Systems Engineering", 2ndEdition, Pearson Education, ISBN978-93-325-5513-6.

Web Link and Video Lectures:

1. https://www.classcentral.com/course/swayam-modern-digital-communication-techniques

2. https://nptel.ac.in/courses/117/101/117101051/

ARM MICROCONTROLLER & EMBEDDED SYSTEMS

B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

ARM MICROCONTROLLER & EMBEDDEDSYSTEMS

B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) Scheme]

Course Code	15EC62	IA Marks	20
Number of Lecture	04	Exam Marks	80
Hours/Week			
TotalNumber of	50 (10 Hours / Module)	Exam Hours	03
Lecture Hours			
	CREDITS – 04		

Course objectives: This course will enable students to:

- Understandthearchitecturalfeatures and instructions et of 32 bit microcontroller ARM CortexM3.
- ProgramARMCortexM3usingthevariousinstructionsandClanguagefor differentapplications.
- Understandthebasichardwarecomponentsandtheirselectionmethodbasedon the characteristics and attributes of an embeddedsystem.
- Developthehardwaresoftwareco-designandfirmwaredesignapproaches.
- Explain the need of real time operating system for embedded system applications.

Module-1

ARM-32bit Microcontroller: Thumb-2 technology and applications of ARM, Architecture of ARM Cortex M3, Various Units in the architecture, Debugging support, General Purpose Registers, Special Registers, exceptions, interrupts, stack operation,

reset sequence (Text 1: Ch 1, 2, 3) L1, L2

Module-2

ARM Cortex M3 Instruction Sets and Programming: Assembly basics, Instruction list and description, Useful instructions, Memory mapping, Bit-band operations and CMSIS, Assembly and C language Programming (Text 1: Ch-4, Ch-5, Ch-10(10.1,

10.2, 10.3, 10.5 only) L1, L2, L3

Module-3

Embedded System Components: Embedded Vs General computing system, Classification of Embedded systems, Major applications and purpose of ES. Core of an Embedded System including all types of processor/controller, Memory, Sensors, Actuators, LED, 7 segment LED display, Optocoupler, Relay, Piezo buzzer, Push button switch, Communication Interface (onboard and external types), Embedded firmware, Other system components. (Text 2: All the Topics from Ch-1 and Ch-2, excluding 2.3.3.4 (stepper motor), 2.3.3.8 (keyboard) and 2.3.3.9 (PPI) sections). L1, L2, L3

Module-4

Embedded SystemDesign Concepts : Characteristics and Quality Attributes of Embedded Systems, Operational and non-operational quality attributes, Embedded

Systems-Application and Domain specific, Hardware Software Co-Design and Program Modelling (excluding UML), Embedded firmware design and development (excluding C language). (Text 2: Ch-3, Ch-4, Ch-7 (Sections 7.1, 7.2 only), Ch-9 (Sections 9.1, 9.2, 9.3.1, 9.3.2 only) L1, L2, L3

Module-5

RTOS IDE Design: and for Embedded System Operating System basics, Types of operatingsystems, Task, processand threads (OnlyPOSIXThreads with an example program), Thread preemption, Preemptive Task scheduling techniques, Task Communication, Task synchronization issues - Racing and Deadlock, Concept of Binary and counting semaphores (Mutex example without any program), How to choose an RTOS, Integration and testing of Embedded hardware and firmware, Embedded system Development Environment - Block diagram (excludingKeil),

Disassembler/decompiler, simulator, emulator and debuggingtechniques (Text 2: Ch-10 (Sections 10.1, 10.2, 10.3, 10.5.2, 10.7, 10.8.1.1, 10.8.1.2, 10.8.2.2, 10.10 only), Ch 12, Ch-13 (a block diagram before 13.1, 13.3, 13.4, 13.5, 13.6 only) L1, L2, L3

Course outcomes: After studying this course, students will be able to:

- Construct the architectural features and instructions of 32 bit microcontroller ARM Cortex M3.
- Make use of the knowledge gained for Programming ARM Cortex M3 for different applications.
- Identify the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.
- Develop the hardware/software co-design and firmware design using ARM Cortex M3.Instruction set.
- Analyze the need of real time operating system for embedded system applications

Text Books :

- 1. Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", 2ndEdition, Newnes, (Elsevier),2010.
- Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, 2ndEdition.

Web Link and Video Lectures:

1. https://nptel.ac.in/courses/117/106/117106111/

2. https://www.classcentral.com/course/swayam-embedded-system-design-with-arm

<u>VLSI Design</u> B.E., VI Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) scheme]

NT 1 0T	15EC63	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50 (10 Hours / Module)	Exam Hours	03	
LectureHours	CREDITS	04		
	CREDITS -			
Course Objectives: The obj	ectives of the course is to enable stud	ents to:		
 Impartknowled the circuits in C Cultivate the co 	lge of MOS transistor theory and Cl lgeonarchitecturalchoicesandperforr CMOStechnology oncepts of subsystem designprocesse e concepts of CMOStesting	nancetradeoffsinvolved in desi	gning and rea	lizing
	Module-1			RBT
				Level
Non-ideal I-V Effects, DO Fabrication: nMOS Fabric	story, MOS Transistors, MOS Trans C Transfer Characteristics (1.1, 1.3, cation, CMOS Fabrication [P-well p s], BiCMOS Technology (1.7, 1.8,1	2.1, 2.2, 2.4, 2.5 of TEXT2). process, N-well		L1, L2
	Module-	-2		I
Basic Circuit Concept	t Design Processes : MOS Layers, Sti s: Sheet Resistance, Area Capa a Capacitance Calculations, Dela 3.3, 4.1, 4.3to	acitances of Layers, Standar	rd Unit of	L1, L2, L3
	Module-3			
Subsystem Design Proce Illustration of the Desig chainandAdder	Module-3 Scaling Models & Scaling Factors esses: Some General considerat gn Processes - Regularity, Desi s(5.1, 5.2, 7.1, 7.2, 8.2, 8.3, 8.4.1, 8.	ions, An illustration of Desig gnofanALUSubsystem,TheMano		L1, L2, L3
Subsystem Design Proce Illustration of the Desig chainandAdder	Scaling Models & Scaling Factors esses: Some General considerat gn Processes - Regularity, Desi 5(5.1, 5.2, 7.1, 7.2, 8.2, 8.3, 8.4.1, 8.	ions, An illustration of Desig gnofanALUSubsystem,TheMand 4.2 of TEXT1).		
Subsystem Design Proce Illustration of the Desig chainandAdder Enhancement Techniques Subsystem Design: Some A Multiplexers, The Program FPGA Based Systems: Intr	Scaling Models & Scaling Factors esses: Some General considerat gn Processes - Regularity, Desi s(5.1, 5.2, 7.1, 7.2, 8.2, 8.3, 8.4.1, 8. Module- Architectural Issues, Switch Logic, G mable Logic Array (PLA) (6.1to 6.3, roduction, Basic concepts, Digital desi , Physical design for FPGA's	ions, An illustration of Desig gnofanALUSubsystem,TheMand 4.2 of TEXT1). 4 ate(restoring) Logic, Parity Gene 6.4.1, 6.4.3, 6.4.6 of TEXT1).	chesterCarry-	L3
Subsystem Design Proce Illustration of the Design chainandAdder Enhancement Techniques Subsystem Design: Some Multiplexers, The Program FPGA Based Systems: Intr design, FPGA architecture	Scaling Models & Scaling Factors esses: Some General considerat gn Processes - Regularity, Desi s(5.1, 5.2, 7.1, 7.2, 8.2, 8.3, 8.4.1, 8. Module- Architectural Issues, Switch Logic, G mable Logic Array (PLA) (6.1to 6.3, roduction, Basic concepts, Digital desi , Physical design for FPGA's	ions, An illustration of Desig gnofanALUSubsystem,TheMand 4.2 of TEXT1). 4 ate(restoring) Logic, Parity Gene 6.4.1, 6.4.3, 6.4.6 of TEXT1). ign and FPGA's, FPGA based S	chesterCarry-	L3

Testing and Verification: Introduction, Logic Verification, Logic Verification Principles, Manufacturing Test Principles, Design for testability (12.1, 12.1, 12.3, 12.5, 12.6 of TEXT2).

Course outcomes: At the end of the course, the students will be able to:

- Utilize the concept of basic MOS transistor, CMOS fabrication flow and technology scaling.
- Make use of the knowledge of physical design aspects to make stick and layout diagrams for various gates.
- Identify the concept of Memory elements along with timing considerations with scaling fundamentals
- Experiment with the basic knowledge of FPGA based system design and testability issues in VLSI Design
- Analyze the various CMOS subsystems and architectural issues with the design constraints.

Question paper pattern:

- The question paper will have tenquestions
- Each full question consists of 16marks.
- Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule.
- Eachfullquestionwillhavesubquestionscoveringallthetopicsundera module
- The students will have to answer 5 full questions, selecting one full question from each module

Text Books:

- "Basic VLSI Design" Douglas A. Pucknell& Kamran Eshraghian, PHI 3rd Edition (original Edition 1994).
- 2. "CMOS VLSI Design- A Circuits and Systems Perspective"- Neil H.E. Weste, David Harris, Ayan Banerjee, 3rd Edition, PearsonEducation.
- 3. "FPGA Based System Design"- Wayne Wolf, Pearson Education, 2004, Technology and Engineering.

Web Link and Video Lectures:

1. https://www.coursera.org/learn/vlsi-cad-logic

2. https://www.classcentral.com/tag/vlsi-design

COMPUTER COMMUNICATION NETWORKS B.E., VI Semester, Electronics & Communication Engineering / Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

	COMPUTER COMMUNICATION	NETWORKS	
B.E., VI Semester,	Electronics & Communication En		
	Engineering		
[A	s per Choice Based Credit System	· · · -	
Course Code			20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50 (10 Hours /Module)	Exam Hours	03
	CREDITS – 04		
Course Objectives: This course wi	ill enable students to:		
• Understandthelayeringarchi	tectureofOSIreferencemodelandT	CCP/IPprotocol suite.	
• Understand the protocols as	sociated with eachlayer.		
• Learnthedifferentnetworkin	garchitecturesandtheirrepresentat	ions.	
• Learnthevariousroutingtech	niquesandthetransportlayerservic	es.	
	Module-1	ns, Data Flow, Networks: Physic	
Architecture, Layers in TCP/IP Multiplexing and Demultiplexing.	ng: Scenarios, Principles, Logica suite, Description of layers, E , The OSI Model: OSI Versus TC odes and Links, Services, Catego k Control(DLC)	ries' of link, Sublayers, Link Lay	Addressing,
	Module-2		
Reservation, Polling, Token Passi Wired LANs: Ethernet: Etherne	ng. t Protocol: IEEE802, Ethernet ciency, Implementation, Fast Eth	CSMA/CD, CSMA/CA. Contro Evolution, Standard Ethernet: Cl ernet: Access Method, Physical L L2	haracteristics,
	Module-3		
WirelessLANs:Introduction:Arch			

DHCP, Network Address Resolution, Forwarding of IP Packets: Based on destination Address and Label. L1, L2

Module-4

Network Layer Protocols: Internet Protocol (IP): Datagram Format, Fragmentation, Options, Security of IPv4 Datagrams, ICMPv4: Messages, Debugging Tools, MobileIP: Addressing, Agents, Three Phases, Inefficiency in MobileIP.

Unicast Routing: Introduction, Routing Algorithms: Distance Vector Routing, Link State Routing, Path vector routing, Unicast Routing Protocol: Internet Structure, Routing Information Protocol, Open Shortest Path First, Border GatewayProtocol

Version 4. L1, L2, L3

Module-5

Transport Layer: Introduction: Transport Layer Services, Connectionless and Connection oriented Protocols, Transport Layer Protocols: Simple protocol, Stop and wait protocol, Go-Back-N Protocol, Selective repeat protocol, User DatagramProtocol: UserDatagram, UDPServices, UDPApplications, TransmissionControlProtocol: TCP Services, TCP Features, Segment, Connection, State Transition diagram, Windows in TCP, Flow control, Error control, TCP congestion control. L1,L2

Course Outcomes: At the end of the course, the students will be able to:

- Make use of the layering architecture of computer networks and distinguish between the OSI reference model and TCP/IP protocol suite.
- Identify the protocols and services of Data link layer
- Identify the protocols and functions associated with the transport layer services.
- Construct a network model and determine the routing of packets using different routing algorithms.
- Distinguish the basic network configurations and standards associated with each network.

Text Book:

Data Communications and Networking , Forouzan, 5thEdition, McGraw Hill, 2016 ISBN: 1-25-906475-3

Reference Books:

- 1. ComputerNetworks,JamesJKurose,KeithWRoss,PearsonEducation, 2013, ISBN:0-273-76896-4
- 2. IntroductiontoDataCommunicationandNetworking,WayarlesTomasi, Pearson Education, 2007, ISBN:0130138282

Web Link and Video Lectures:

 $1.\ https://www.classcentral.com/course/fundamentals-network-communications$

2. https://www.udacity.com/course/computer-networking--ud436

CELLULAR MOBILE COMMUNICATIONS

B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

	[His per choice Dused credi	it bystem (CDCb) sen	ennej
Subject Code	15EC651	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (8 Hours /Module)	Exam Hours	03
Lecture Hours			
CREDITS – 03			

Course Objectives: This course enables students to:

- Understandtheapplicationofmultiuseraccessinacellularcommunication scenario.
- Understandthepropagationmechanismsinanurbanmobilecommunications using statistical and empiricalmodels.
- Understandsystemarchitecture, callprocessing protocols and services of GSM, GPRS and EDGE.
- Understandsystemarchitecture, callprocessing protocols and services of CDMA based systems IS95 and CDMA2000.

Module-1	RBT
Cellular Concept: Frequency Reuse, Channel Assignment Strategies, Interference and System Capacity, Power Control for Reducing Interference, Trunking and Grade of Service, Improving Capacity in Cellular Systems. Mobile Radio Propagation: Large Scale path Loss- Free Space Model, Three pasicpropagationmechanisms, Practical Link Budget Designusing Path Loss Models, Outdoor Propagation Models–Okumura, Hata, PCSExtension to Hata Model (explanations only) (Text 1).	Leve
Module-2	
Mobile Radio Propagation: Small -Scale Fading and Multipath: Small scale Multipath Propagation, Impulse Response Model of a Multipath Channel, Small-Scale Multipath Measurements, Parameters of Mobile Multipath Channels, Types of Small-Scale Fading, Rayleigh and Ricean Distributions, StatisticalModelforMultipathFadingChannels(Clarke'sModel for Flat Fading only).(Text 1)	L1, L
Module-3	
System Architecture and Addressing : Systemarchitecture, TheSIMconcept, Addressing, Registers and subscriber lata, Location registers (HLR and VLR) Security-related registers (AUC and EIR), Subscriber data, Network interfaces and configurations. Air Interface – GSM Physical Layer: Logical channels, Physical channels, Synchronization - Frequency and clock synchronization, Adaptive frame synchronization, Mapping of logical onto physical channels, Radio subsystem link control, Channel coding, source	L1, L

Signaling at the user interface.(Text 2) Module-4	1
GSM Roaming Scenarios and Handover : Mobileapplicationpartinterfaces,Locationregistrationandlocationupdate, Connection establishment and termination, Handover. (up to 6.4.1 only in Text2)	L1, L2
Services:	
Classical GSM services, Popular GSM services: SMS and MMS.	
Improved data services in GSM : GPRS, HSCSD andEDGE GPRSSystemarchitectureofGPRS,Services,Sessionmanagement,mobility	
nanagementandrouting, Protocolarchitecture, Signalingplane, Interworking with IP networks, Air nterface, Authentication and ciphering, Summary of GPRS.	
HSCSD: Architecture, Air interface, HSCSD resource allocation and capacity issues. EDGE: The EDGE concept, EDGE physical layer, modulation and coding, EDGE: effects on the GSM system architecture, ECSD and EGPRS. (Text 2)	
Module-5	
CDMA Technology – Introduction to CDMA,CDMA frequency bands, CDMA Network and System	L1, L2
Architecture, CDMA Channel concept, Forward Logical Channels, Reverse logical Channels, CDMA rame format, CDMA System Operations(Initialization/Registration), Call Establishment, CDMA Call nandoff,IS-95B,CDMA2000,W-CDMA,UMTS,CDMA data networks, Evolution of CDMA to 3G,	
CDMA 2000 RAN Components, CDMA 2000 Packet Data Service. (Text 3)	
 CDMA 2000 RAN Components, CDMA 2000 Packet Data Service. (Text 3) Course outcomes: At the end of the course, the students will be able to: Identify the statistical characterization of urban mobile channels to compute the performance for simple r schemes. 	nodulatio
 Course outcomes: At the end of the course, the students will be able to: Identify the statistical characterization of urban mobile channels to compute the performance for simple r schemes. Identify the functionalities of GSM, GPRS and CDMA to meet high data rate requirements and limited 	nodulatio
 Course outcomes: At the end of the course, the students will be able to: Identify the statistical characterization of urban mobile channels to compute the performance for simple r schemes. Identify the functionalities of GSM, GPRS and CDMA to meet high data rate requirements and limited improvements that are needed 	
 Course outcomes: At the end of the course, the students will be able to: Identify the statistical characterization of urban mobile channels to compute the performance for simple r schemes. Identify the functionalities of GSM, GPRS and CDMA to meet high data rate requirements and limited improvements that are needed Analyse the call process procedure between a calling number and called number for all scenarios in GSM CDMA based systems Build and validate voice / data call handling for various scenarios in GSM and CDMA systems for nation international interworking situations 	or
 Course outcomes: At the end of the course, the students will be able to: Identify the statistical characterization of urban mobile channels to compute the performance for simple r schemes. Identify the functionalities of GSM, GPRS and CDMA to meet high data rate requirements and limited improvements that are needed Analyse the call process procedure between a calling number and called number for all scenarios in GSM CDMA based systems Build and validate voice / data call handling for various scenarios in GSM and CDMA systems for nation international interworking situations 	or
 Course outcomes: At the end of the course, the students will be able to: Identify the statistical characterization of urban mobile channels to compute the performance for simple r schemes. Identify the functionalities of GSM, GPRS and CDMA to meet high data rate requirements and limited improvements that are needed Analyse the call process procedure between a calling number and called number for all scenarios in GSM CDMA based systems Build and validate voice / data call handling for various scenarios in GSM and CDMA systems for nation international interworking situations Choose voice and data call handling for various scenarios CDMA systems for national and international 	or
 Course outcomes: At the end of the course, the students will be able to: Identify the statistical characterization of urban mobile channels to compute the performance for simple r schemes. Identify the functionalities of GSM, GPRS and CDMA to meet high data rate requirements and limited improvements that are needed Analyse the call process procedure between a calling number and called number for all scenarios in GSM CDMA based systems Build and validate voice / data call handling for various scenarios in GSM and CDMA systems for nation international interworking situations Choose voice and data call handling for various scenarios CDMA systems for national and international interworking situations 	or
 Course outcomes: At the end of the course, the students will be able to: Identify the statistical characterization of urban mobile channels to compute the performance for simple r schemes. Identify the functionalities of GSM, GPRS and CDMA to meet high data rate requirements and limited improvements that are needed Analyse the call process procedure between a calling number and called number for all scenarios in GSM CDMA based systems Build and validate voice / data call handling for various scenarios in GSM and CDMA systems for nation international interworking situations Choose voice and data call handling for various scenarios CDMA systems for national and international interworking situations 	or
 Course outcomes: At the end of the course, the students will be able to: Identify the statistical characterization of urban mobile channels to compute the performance for simple r schemes. Identify the functionalities of GSM, GPRS and CDMA to meet high data rate requirements and limited improvements that are needed Analyse the call process procedure between a calling number and called number for all scenarios in GSM CDMA based systems Build and validate voice / data call handling for various scenarios in GSM and CDMA systems for nation international interworking situations Choose voice and data call handling for various scenarios CDMA systems for national and international interworking situations Question paper pattern: The question paper will have tenquestions 	or
 Course outcomes: At the end of the course, the students will be able to: Identify the statistical characterization of urban mobile channels to compute the performance for simple r schemes. Identify the functionalities of GSM, GPRS and CDMA to meet high data rate requirements and limited improvements that are needed Analyse the call process procedure between a calling number and called number for all scenarios in GSM CDMA based systems Build and validate voice / data call handling for various scenarios in GSM and CDMA systems for nation international interworking situations Choose voice and data call handling for various scenarios CDMA systems for national and international interworking situations Question paper pattern: The question paper will have tenquestions Each full question consists of 16marks. 	or
 Course outcomes: At the end of the course, the students will be able to: Identify the statistical characterization of urban mobile channels to compute the performance for simple r schemes. Identify the functionalities of GSM, GPRS and CDMA to meet high data rate requirements and limited improvements that are needed Analyse the call process procedure between a calling number and called number for all scenarios in GSM CDMA based systems Build and validate voice / data call handling for various scenarios in GSM and CDMA systems for national interworking situations Choose voice and data call handling for various scenarios CDMA systems for national and international interworking situations Question paper pattern: The question paper will have tenquestions Each full question consists of 16marks. Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule. 	or
 Course outcomes: At the end of the course, the students will be able to: Identify the statistical characterization of urban mobile channels to compute the performance for simple r schemes. Identify the functionalities of GSM, GPRS and CDMA to meet high data rate requirements and limited improvements that are needed Analyse the call process procedure between a calling number and called number for all scenarios in GSM CDMA based systems Build and validate voice / data call handling for various scenarios in GSM and CDMA systems for nation international interworking situations Choose voice and data call handling for various scenarios CDMA systems for national and international interworking situations Question paper pattern: The question paper will have tenquestions Each full question consists of 16marks. Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule. 	or

- Theodore Rapport, "Wireless Communications Principles and Practice", Prentice Hall of India, 2ndEdition, 2007, ISBN978-8-120-32381-0.
- $2. \ Jorg Eberspacher, Hans-Jorg Vogel, Christian Bettstetter, Christian Hartmann,$

"GSM-Architecture,ProtocolsandServices",Wiley,3rdEdition,2009,ISBN-978- 0-470-03070-7.
3. Gary J Mullet, "Introduction To Wireless Telecommunications Systems and Networks", Cengage Learning.

ADAPTIVE SIGNAL PROCESSING B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

	[As per Choice Based Ci	redit System (CBCS)	scheme]	
Subject Code	15EC652	IA Marks	20	
Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of Lecture Hours	40 (8 Hours /Module)	Exam Hours	03	
Lecture mours	CBE	DITS – 03		
Course Objectives: The object		D115 - 05		
Introduce to the conUnderstandtheconceIntroduce to common	cept and need of adaptive fi eptsoftrainingandconvergence on linear estimationtechnique ations of adaptive systems to	ceandthetrade-offbetw es		
	Module-	1		RBT Level
linear combiner input signa gradientandminimummean	tions and characteristics - a al and weight vectors-perfor squareerror- introductiontof hogonality-Wiener–Hopfeq	mancefunction- iltering-smoothingand	lprediction-	L1, L2
	Module-			
Newton's method - method variance	rface -stability and rate of of steepest descent - compar- nts-mis-adjustments(Chapto	ison - Gradient estimat		L1, L2
-excessivisEandtimeeolista				
	Module- nce of weight vector: LM aptive recursive filters - r rs 6& 8 of Text).	S/Newton algorithm		L1, L2, L3
	Module-	4		
	elingand system identificat	tion : Multipath	napter 9 ofText).	L1, L2, L3
	Module-	5		
1	g : Equalization, and decord d zeros for IIR digital filter	nvolution adaptive ed	1 I	L1, L2, L3
	nd of the course, students sho			
estimationofparamete	ons for optimising the cost a rsandappreciate the need for a ance of various methods for	daptationindesign.		

through estimation of different parameters of stationary random process clearly considering practical application specifications.

- Analyse convergence and stability issues associated with adaptive filter design and come up with optimum solutions for real life applications taking care of requirements in terms of complexity and accuracy.
- Design and implement filtering solutions for applications such as channel equalisation, interference cancelling and prediction considering present day challenges.

Question paper pattern:

- The question paper will have tenquestions
- Each full question consists of 16marks.
- Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule.
- Eachfullquestionwillhavesubquestionscoveringallthetopicsundera module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Bernard Widrow and Samuel D. Stearns, "Adaptive Signal Processing", Person Education, 1985. Reference Books:

- 1. SimonHaykin,"AdaptiveFilterTheory",PearsonEducation,2003.
- 2. John R. Treichler, C. Richard Johnson, Michael G. Larimore, "Theory and Design of Adaptive Filters", Prentice-Hall of India,2002.

ARITIFICAL NEURAL NETWORKS

B.E., VI Semester, Electr	onics & Communicati	on Engineering/ Tel	ecommunication	Engineering
[As	per Choice Based Cre	edit System (CBCS)) scheme]	

	[As per Choice Based Ci	redit System (CBCS)	scheme]	
Subject Code	15EC653	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours /Module)	Exam Hours	03	
Lecture Hours				
	CRE	DITS – 03		
Course Objectives: The object	tives of this course are:			
• Understandtheb	asicsofANNandcomparison	withHumanbrain		
	dge on Generalization and f		n andvarious architectures o	f building
• Provideknowled	lgeofreinforcementlearning	isingneuralnetworks		
		•		
 Provideknowled 	lgeofunsupervisedlearningu	singneuralnetworks.		
	M ~ 11 -			RBT
	Module-	1		Level
				20,01
Architecture :Feedforward Linear Separable Problem Learning:LearningAlgorit	Neuron – Artificial Neura l and Feedback, Convex Se . XOR Problem, Multilayer I hms,ErrorcorrectionandGrad g Algorithm, Perceptron Cor	ts, Convex Hull and Networks. dientDescentRules,		L1, L2
Supervised Learning: Der	Module- ceptron learning and Non S		st Maan Squara Laarning	L1, L2,
MSE Error surface, Steep	est Descent Search, µ-LMS Multi-layered Network Arc	approximate to gradie	ent descent, Application of	L1, L2, L3
	Module	-3		
Theory, Support Vector M	and Radial Basis Function Machines, SVM application neralized RBF Networks, Le	to Image Classificati	on, Radial Basis Function	L1, L2, L3
	Module	-4		
memory, Hopfield Netwo SimulatedAnnealing,	AssociativeLearningAttrac	torAssociativeMemor Network, Brain State	-	L1, L2, L3
0.16	Module-		- Deinsingl C	1110
	Map :Maximal Eigenvecto ws, Vector Quantization, Se			L1, L2, L3

Course outcomes: At the end of the course, students should be able to:

- Understandtheroleofneuralnetworksinengineering, artificial intelligence, and cognitive modelling.
- Understandtheconceptsandtechniquesofneuralnetworksthroughthestudyof the most important neural networkmodels.
- $\bullet \quad Evaluate whether neural networks are appropriate to a particular application.$
- Applyneuralnetworkstoparticularapplications, and to know what steps to take to improve performance.

Question paper pattern:

The question paper will have ten questions.

- Each full question consists of 16marks.
- Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Neural Networks A Classroom Approach– Satish Kumar, McGraw Hill Education (India) Pvt. Ltd, Second Edition.

Reference Books:

- 1. Introduction to Artificial Neural Systems- J.M. Zurada, Jaico Publications 1994.
- 2. Artificial Neural Networks- B. Yegnanarayana, PHI, New Delhi1998.

DIGITAL SWITCHINGSYSTEMS B.E., VI Semester, Electronics &Communication Engineering/ TelecommunicationEngineering [As per Choice Based Credit System (CBCS) scheme]

	[As per Choice Based Cre	an System (CBCS)	schemej	
Subject Code	15EC654	IA Marks	20	
Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of Lecture Hours	40 (8 Hours /Module)	Exam Hours	03	
	CRED	TTS - 03		
Course Objectives: This cour				
• Understandthebasicsoft	elecommunicationnetworksan ofswitchingsystemsandthedig	U	of data.	
• Study about the telecom	munication traffic and itsmea	surements.		
•	sociatedwiththedataswitching			
•	warefortheswitchinganditsma	-		
	Module-1			RBT
				Level
terminology, Regulation, S	ECOMMUNICATIONS:Net Standards. Introduction to tele transmission, FDM,TDM, PD	ecommunications tra		L1, L2
	Module-2			
Functions of switching syste DIGITAL SWITCHING	CHING SYSTEMS: Introduc ems, Distribution systems, Basic SYSTEMS: Switching system ntrol switching systems, Build	cs of crossbar system m hierarchy, Evolu	s, Electronicswitching. tion of digital switching	L1, L2
	Module-3			
	NS TRAFFIC: Introduction al model, lost call systems, Qu Introduction, Single stage netw	euing systems.	c, Congestion, Traffic	L1, L2
	Module-4			
TIME DIVISION SWITC Synchronisation.	HING: Introduction, space an	d time switching, 7	Time switching networks,	L1, L2
SWITCHING SYSTEM architecture for level 1to Software linkages during c	SOFTWARE: Introduction 3 control, Digital switching all, ture interaction. [Text-1 and 2	system software cla		
	Module-5			
maintenance, Interface of a	GITAL SWITCHING SYSTE a typical digital switching syst g system reliability,Impact			L1, L2

of software patches on digital switching system maintainability, A methodology for proper maintenance of digital switching system A GENERIC DIGITAL SWITCHING SYSTEM MODEL: Introduction, Hardwarearchitecture,Softwarearchitecture,Recoverystrategy,Simplecall through a digital system, Common characteristics of digital switching systems. Reliability analysis.[Text-2]

- Identify the basic concepts and parameters of telecommunication networks and services.
- Identify the basic concepts and parameters of telecommunication networks and services.
- Model the traffic flow in lost call systems and queuing systems.
- Organize the digital switching software architecture for various levels of control.
- Identify the software aspects of switching systems and its maintenance.

Question paper pattern:

- The question paper will have tenquestions
- Each full question consists of 16marks.
- Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule.
- Eachfullquestionwillhavesubquestionscoveringallthetopicsundera module
- The students will have to answer 5 full questions, selecting one full question from each module

Text Books:

- 1. TelecommunicationandSwitching, TrafficandNetworks-JEFlood:Pearson Education, 2002.
- 2. Digital Switching Systems, Syed R. Ali, TMH Ed2002.

Reference Book:

Digital Telephony - John C Bellamy: Wiley India Pvt. Ltd, 3rd Ed, 2008.

MICROELECTRONICS

B.E., VI Semester, Electronics & Communication Engineering/ Telecommunication Engineering
[As per Choice Based Credit System (CBCS) scheme]

	[As per Choice Based C	Credit System (CBCS)	scheme]	
Subject Code	15EC655	IA Marks	20	
Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of LectureHours	40 (8 Hours /Module)	Exam Hours	03	
	CRI	EDITS – 03		
 Befamiliar with the l characteristics, circ Confront integrated Analyze and design Contrast the input/ 	urse will enable students to: MOSFETphysicalstructurear uitmodelsandbasiccircuitap Ideviceand/orcircuitdesignpr microelectroniccircuitsforlir output and gain characterist plifierbuildingblockstages.	plications. oblems,identifythedesi nearamplifieranddigital	applications.	
	Module	×-1		RBT Level
MOSFETS: Device Struct MOSFET as an amplifier	ture and Physical Operation and as a switch.	, V-I Characteristics, M	IOSFET Circuits at DC,	L1, L2
	Modul			
	Modul Biasing in MOS amplifier Ci SFET internal capacitances,	rcuits, Small Signal Op		L1, L2
	Biasing in MOS amplifier Ci	rcuits, Small Signal Of frequency response of		L1, L2
MOSFET amplifier, MOS MOSFETS (continued): I Single Stage IC Amplifie	Biasing in MOS amplifier Ci SFET internal capacitances,	rcuits, Small Signal O _I frequency response of e-3 iers. Γ and BJT, Current so	CS amplifier.	
MOSFET amplifier, MOS MOSFETS (continued): I Single Stage IC Amplifie Current steering circuits, I	Biasing in MOS amplifier Ci SFET internal capacitances, Modul Discrete circuit MOS amplif er: Comparison of MOSFET high frequency response- ge Modul	rcuits, Small Signal Op frequency response of e-3 iers. Γ and BJT, Current so eneral considerations. e-4	CS amplifier. urces, Current mirrors and	L1, L2,
MOSFET amplifier, MOS MOSFETS (continued): I Single Stage IC Amplifie Current steering circuits, I Single Stage IC Amplifi amplifiers with active lo	Biasing in MOS amplifier Ci SFET internal capacitances, Modul Discrete circuit MOS amplif er: Comparison of MOSFET high frequency response- ge Modul fier(continued) :CS with a bads, high frequency respon	rcuits, Small Signal Op frequency response of e-3 iers. Γ and BJT, Current so eneral considerations. e-4 ctive loads, high frequ	CS amplifier. urces, Current mirrors and ency response of CS, CG	L1, L2,
MOSFET amplifier, MOS MOSFETS (continued): I Single Stage IC Amplifie Current steering circuits, I Single Stage IC Amplifi amplifiers with active lo degeneration (only MOS a	Biasing in MOS amplifier Ci SFET internal capacitances, Modul Discrete circuit MOS amplif er: Comparison of MOSFET high frequency response- ge Modul fier(continued) :CS with a bads, high frequency respon amplifiers to be dealt). Modul	rcuits, Small Signal Op frequency response of e-3 iers. Γ and BJT, Current some eneral considerations. e-4 ctive loads, high frequence use of CG, Cascode a e-5	CS amplifier. urces, Current mirrors and ency response of CS, CG mplifiers. CS with source	L1, L2, L3
MOSFET amplifier, MOS MOSFETS (continued): I Single Stage IC Amplifie Current steering circuits, I Single Stage IC Amplifie amplifiers with active lo degeneration (only MOS a Differential and Multista differential pair, Differential	Biasing in MOS amplifier Ci SFET internal capacitances, Modul Discrete circuit MOS amplif er: Comparison of MOSFET high frequency response- ge Modul fier(continued) :CS with a bads, high frequency respon amplifiers to be dealt).	rcuits, Small Signal Of frequency response of e-3 iers. Γ and BJT, Current so eneral considerations. e-4 ctive loads, high frequence nse of CG, Cascode a e-5 lifferential pair, small pads, and frequency re	CS amplifier. urces, Current mirrors and ency response of CS, CG mplifiers. CS with source signal operation of MOS	L1, L2, L3
MOSFET amplifier, MOS MOSFETS (continued): I Single Stage IC Amplifie Current steering circuits, I Single Stage IC Amplifi amplifiers with active lo degeneration (only MOS a Differential and Multista differential pair, Differen amplifiers. Multistage am	Biasing in MOS amplifier Ci SFET internal capacitances, Modul Discrete circuit MOS amplifier: Comparison of MOSFET high frequency response- get Modul fier(continued) :CS with a bads, high frequency respon amplifiers to be dealt). Modul ge Amplifiers: The MOS contial amplifier with active let	rcuits, Small Signal Op frequency response of e-3 iers. Γ and BJT, Current some eneral considerations. e-4 ctive loads, high frequence ise of CG, Cascode a e-5 lifferential pair, small bads, and frequency re- ers to be dealt).	CS amplifier. urces, Current mirrors and ency response of CS, CG mplifiers. CS with source signal operation of MOS	L1, L2 L3 L1, L2
MOSFET amplifier, MOS MOSFETS (continued): I Single Stage IC Amplifie Current steering circuits, I Single Stage IC Amplifi amplifiers with active lo degeneration (only MOS a Differential and Multista differential pair, Differen amplifiers. Multistage am Course outcomes: After st • Explain the under	Biasing in MOS amplifier Ci SFET internal capacitances, Modul Discrete circuit MOS amplifier: Comparison of MOSFET high frequency response- get Modul fier(continued) :CS with a back, high frequency respondent amplifiers to be dealt). Modul ge Amplifiers: The MOS contained amplifiers (only MOS amplifier	rcuits, Small Signal Of frequency response of e-3 iers. Γ and BJT, Current so eneral considerations. e-4 ctive loads, high frequence is of CG, Cascode a e-5 lifferential pair, small bads, and frequency re- ers to be dealt).	CS amplifier.	L1, L2 L3 L1, L2

• UseofdiscreteMOScircuitstodesignSinglestageandMultistage amplifiers to meet stated operatingspecifications.

Question paper pattern:

- The question paper will have tenquestions
- Each full question consists of 16marks.
- Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule.
- Eachfullquestionwillhavesubquestionscoveringallthetopicsundera module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

"Microelectronic Circuits", Adel Sedra and K.C. Smith, 6thEdition, Oxford University Press, International Version, 2009.

Reference Books:

- 1. "Microelectronics Anintegrated approach", Roger T Howe, Charles G Sodini, Pearsoneducation.
- 2. "Fundamentals of Microelectronics", BehzadRazavi, John Wiley India Pvt. Ltd, 2008.
- 3. "Microelectronics-AnalysisandDesign", SundaramNatarajan, TataMcGraw-Hill, 2007.

EMBEDDED CONTROLLERLAB

B.E., VI Semester, Electronics &Communication Engineering/ TelecommunicationEngineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15ECL67	IA Marks	20
Number of Lecture Hours/Week	01Hr Tutorial(Instructions) + 02 Hours Laboratory = 03	Exam Marks	80
RBT Levels	L1, L2, L3	Exam Hours	03
	CREDITS – 02		

Course objectives: This course will enable students to:

• UnderstandtheinstructionsetofARMCortexM3,a32bitmicrocontrollerandthe softwaretoolrequiredforprogramminginAssemblyandClanguage.

- ProgramARMCortexM3usingthevariousinstructionsinassemblylevellanguage for differentapplications.
- Interface external devices and I/O with ARM CortexM3.
- DevelopClanguageprograms and library functions for embedded system applications.

Laboratory Experiments

PART-A: Conduct the following Study experiments to learn ALP using ARM Cortex M3 Registers using an Evaluation board and the required software tool.

- 1. ALP to multiply two 16 bit binarynumbers.
- 2. ALP to find the sum of first 10 integernumbers.

PART-B: Conduct the following experiments on an ARM CORTEX M3 evaluation board using evaluation version of Embedded 'C' &Keil uVision-4 tool/compiler.

- 1. Display "Hello World" message using InternalUART.
- 2. Interface and Control a DCMotor.
- 3. InterfaceaSteppermotorandrotateitinclockwiseandanti-clockwise direction.

- 4. InterfaceaDACandgenerateTriangularandSquarewaveforms.
- $5. \ Interface a 4x4 keyboard and display the key code on an LCD.$
- 6. UsingtheInternalPWMmoduleofARMcontrollergeneratePWMandvaryits dutycycle.
- 7. Demonstrate the use of an external interrupt to toggle an LEDOn/Off.
- 8. DisplaytheHexdigits0toFona7-segmentLEDinterface, withan appropriate delay inbetween.
- 9. InterfaceasimpleSwitchanddisplayitsstatusthroughRelay,Buzzerand LED.
- 10. MeasureAmbienttemperatureusingasensorandSPIADCIC.

Course outcomes: After studying this course, students will be able to:

- Apply the instruction set of 32 bit microcontroller ARM Cortex M3, and the software tool required for programming in Assembly and C language.
- Develop assembly language programs using ARM Cortex M3 for different applications
- Develop C language programs to interface external devices and I/O with ARM Cortex M3.
- Develop C language programs for embedded system applications.
- Develop C language programs which makes use of library functions for embedded system applications.

Conduction of Practical Examination:

- 1. PART-BexperimentsusingEmbedded-Careonlytobeconsideredforthepractical examination.PART-AALPprogramsareforstudypurposeandcanbeconsidered for Internal Marksevaluation.
- 2. Strictlyfollowtheinstructionsasprintedonthecoverpageofanswerscriptfor breakup ofmarks.
- 3. ChangeofexperimentisallowedonlyonceandMarksallottedtotheprocedure part to be madezero.

COMPUTER NETWORKS LABORATORY B.E., VI Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) scheme]

		•~/~		
Subject Code	15ECL68	IA Marks	20	
Number of Lecture Hours/Week	01Hr Tutorial(Instructions) + 02 Hours Laboratory = 03	Exam Marks	80	
RBT Levels	L1, L2, L3	Exam Hours	03	
CREDITS – 02				

Course objectives: This course will enable students to:

Choosesuitabletoolstomodelanetworkandunderstandtheprotocolsatvarious OSI referencelevels.

- DesignasuitablenetworkandsimulateusingaNetworksimulatortool.
- $\bullet \quad Simulate the networking concepts and protocols using C/C++ programming.$
- $\bullet \quad Model the networks for different configurations and analyze the results.$

Laboratory Experiments

PART-A: Simulation experiments using NS2/ NS3/ OPNET/ NCTUNS/ NetSim/ QualNet or any other equivalent tool

- 1. Implement a point to point network with four nodes and duplex links between them. Analyze the network performance by setting the queuesize and varying the bandwidth.
- 2. Implementafournodepointtopointnetworkwithlinksn0-n2,n1-n2andn2-n3. Apply TCP agent between n0-n3 and UDP between n1-n3. Apply relevant applicationsoverTCPandUDPagentschangingtheparameteranddeterminethe number of packets sent byTCP/UDP.
- 3. ImplementEthernetLANusingn(6-10)nodes.Comparethethroughputby changing the error rate and datarate.
- 4. ImplementEthernetLANusingnnodesandassignmultipletraffictothenodes and obtain congestion window for different sources/destinations.
- $5. \ Implement ESS with transmission nodes in Wireless LAN and obtain the performance parameters.$
- 6. Implementation of Link state routing algorithm.

PART-B: Implement the following inC/C++

1. Write a program for a HLDC frame to perform the following.

- i) Bitstuffing
- ii) Characterstuffing.
- 2. Writeaprogramfordistancevectoralgorithmtofindsuitablepathfor transmission.

- 3. Implement Dijkstra's algorithm to compute the shortest routingpath.
- 4. Forthegivendata,useCRC-CCITTpolynomialtoobtainCRCcode.Verifythe program for thecases a. Withouterror
- b. Witherror
- 5. Implementation of Stopand Wait Protocol and Sliding Window Protocol
- 6. Writeaprogramforcongestioncontrolusingleakybucketalgorithm.

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Illustrate the operations of network protocols and algorithms using C programming.
- Utilize the network simulator for learning and practice of networking algorithms.
- Build the network with different configurations to measure the performance parameters.
- Develop the data link and routing protocols using C programming.
- Develop wired and wireless LAN protocol using network simulator

Conduct of Practical Examination:

- Alllaboratory experiments are to be included for practical
- For examination on equestion from software and on equestion from hardware or only one hardware experiments based on the complexity to be set.
- Students are allowed to pick one experiment from thelot.
- Strictlyfollowtheinstructionsasprintedonthecoverpageofanswerscriptfor breakup ofmarks.
- ChangeofexperimentisallowedonlyonceandMarksallottedtotheprocedure part to be madezero.

examination.

.th

6 th Semester Open Electives S	yllabus for the courses offered by EC	/TC Board:			
I	DATA STRUCTURE USING C 3.E VI Semester (Open Elective) Based Credit System (CBCS) Scheme	<u>++</u>			
Course Code 15EC661 IA Marks					
Number of Lecture Hours/Week	03	Exam Marks	80		
Total Number of Lecture Hours	40 (08 HrsperModule)	Exam Hours	03		
	CREDITS – 03				
Analyze Linear Data StructuAnalyze Non Linear Data Structu					
	arameters,Dynamicmemoryallocatio ata structures, Array Representation,				
	Module -2				
	Matrices, Special matrices, Sparse ma ayRepresentation,LinkedRepresenta L2,L3		sis		
	Module -3				
QUEUES: The abstract data types, A arrangement.	rray Representation, Linked Represen	tation, Applications-Railroad	car		
HASHING: Dictionaries, Linear rep	presentation, Hash table representati	on. L1, L2, L3			
	Module -4				
BINARYANDOTHERTREES:Tre binarytrees,Commonbinarytreeoper linked binary tree. L1, L2,L3			nd the class		

Module -5

Priority Queues : Linear lists, Heaps, Applications-Heap Sorting. SearchTrees:Binarysearchtreesoperationsandimplementation,BinarySearch trees with duplicates. L1, L2,L3

Course outcomes: After studying this course, students will be able to:

- Acquire knowledge of Dynamic memory allocation, Various types of data structures, operations and algorithms and Sparse matrices and Hashing
- UnderstandnonLineardatastructurestreesandtheirapplications
- Designappropriatedatastructuresforsolvingcomputingproblems
- Analyze the operations of Linear Data structures: Stack, Queue and Linked List and theirapplications

Text Book:

Data structures, Algorithms, and applications in C++, SartajSahni, Universities Press, 2ndEdition, 2005.

Reference Books:

- 1. Data structures, Algorithms, and applications in C++, SartajSahni, Mc. Graw Hill, 2000.
- 2. Object Oriented Programming with C++, E.Balaguruswamy, TMH, 6th Edition, 2013.
- 3. Programming in C++, E.Balaguruswamy. TMH, 4th, 2010.

POWER ELECTRONICS

B.E., VI Semester (Open Elective) [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC662	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of Lecture	40 (08 Hours / Module)	Exam Hours	03	
Hours				
	CREDITS – 03			
Course Objectives: This course will	enable students to			
• Understand the working of var	ious powerdevices.			
	cuitswithdifferenttriggeringtechnic			
	evicesincontrolledrectifiers, conver			
 Study of power electronics circ 	uits under differentload condition	S.		
	Module-1			RBT
				Level
Introduction - Application			conductor	L1, L2
	fPowerDevices,typesofPowerElec			
	: Steady state characteristics. Po		operation,	
•	: device operation, output and tran	ister characteristics.		
(Text 1)				
	Module-2			
Thyristors - Introduction, Princi	ple of Operation of SCR, Static A	Anode- Cathode Characte	eristics of	L1, L2, I
SCR, Two transistor model	of SCR, Gate Characterist	icsofSCR,Turn-ONMeth	ods,Turn-	
	ods: Natural and Forced Commut		s B types,	
	ringCircuit,Resistancecapacitance	firing circuit.		
(Text 2)				
	Module-3			
Controlled Rectifiers - Introduct	ion, principle of phase controlled	converter operation, Sin	gle phase	L1, L2, I
full converters, Single phase dua				
	- Introduction, Principl		Control,	
	hasecontrolwithresistiveandinduc	tive loads.		
(Text 1)				
	Module-4			
			and it's	L1, L2
	tep-upoperation,Step-upconverter			
	neters,Converterclassification,Swi			
. .	oostregulator,Buck-BoostRegulat	ors.		
(Text 1)				

Module-5	
Pulse Width Modulated Inverters- Introduction, principle of operation, performance parameters, Single phase bridge inverters, voltage control of single phase inverters, current source inverters, Variable DC-link inverter, Boostinverter. (Text1)	L1, L2
Course outcomes: After studying this course, students will be able to:	
• Describe the characteristics of different power devices and identify the applications.	
• Illustrate the working of DC-DC converter and inverter circuit.	
• Determinetheoutputresponseofathyristorcircuitwithvarioustriggering options.	
• Determinetheresponseofcontrolledrectifier with resistive and inductive loads.	
Evaluation of Internal AssessmentMarks:	
ItissuggestedthatatleastafewexperimentsofPowerElectronicsareconductedbythe students for better und the course. This activity can be considered forthe evaluation of 5 marks out of 20 Internal asses reserved for the other activities.	
Question paper pattern:	
• The question paper will have tenquestions	
• Each full question consists of 16marks.	
• Therewillbe2fullquestions(withamaximumofThreesubquestions)fromeach module.	
$\bullet \ \ Each full question will have subquestions covering all the topic sunder a module$	
• Thestudents will have to answer 5 full questions, selecting one full question from each module	
Text Book:	
 Mohammad H Rashid, Power Electronics, Circuits, Devices and Applications, 3rd/4thEdition, Pear Education Inc, 2014, ISBN:978-93-325-1844-5. 	son
2. M.DSinghandKBKhanchandani,PowerElectronics,2ndEdition,TataMc-Graw Hill, 2009, ISBN	:0070583897.
Reference Books:	
4. L.Umanand, PowerElectronics, Essentials and Applications, John Wiley India Pvt. Ltd, 2009.	
5. Dr.P.S.Bimbhra, "PowerElectronics", KhannaPublishers, Delhi, 2012.	
6. P.C.Sen, "ModernPowerElectronics", SChand&CoNewDelhi, 2005.	

DIGITAL SYSTEM DESIGN USING VERILOG

B.E., VI Semester (Open Elective) [As per Choice Based Credit System (CBCS) scheme]

- *	ased Credit System (CBCS) sch			
Subject Code:	15EC663	IA Marks: 20		
Number of Lecture Hours/Week:	03	Exam Marks: 80		
Total Number of Lecture Hours:40 (08 Hrs per module)Exam Hours: 03CDEDUTE02				
	CREDITS – 03			
Course objectives: This course will enable stude				
• Understand the concepts of VerilogLa				
Designthedigitalsystemsasanactivityin	••••	1 1		
 Studythedesignandoperationofsemicon specific digitalsystem. 				
 InspecthoweffectivelyIC'sareembedde differentapplication. 	dinpackageandassembledin PCI	3's for		
• DesignanddiagnosisofprocessorsandI/0	Ocontrollersusedinembeddedsys	tems.		
	Module -1		RBT	
			Level	
Introduction and Methodology:			L1, L2, L3	
DigitalSystemsandEmbeddedSystems,Real-W-1.5 ofText).	orldCircuits,Models,Design Me	thodology $(1.1, 1.3 to)$		
Combinational Basics: Combinational Compon Circuits.(2.3 and 2.4 ofText)	ents and Circuits, Verification of	Combinational		
Sequential Basics: Sequential Datapaths and Co 4.3.1,4.4 up to 4.4.1 ofText).	ontrol Clocked Synchronous Timi	ng Methodology (4.3 up to		
	Module -2			
Memories: Concepts, Memory Types, Error D	etection and Correction (Chap 5	of Text).	L1, L2, L3	
	Module -3			
Implementation F abrics: Integrated Circuits, Pro Packaging and Circuit boards, Interconnection		Text).	L1, L2, L3	
	Module -4			
I/O interfacing: I/O devices, Transmission, I/O software (Chap 8 ofText).	I/O controllers, Parall	el Buses, Serial	L1, L2, L3	
	Module -5			
Design Methodology: Design flow, Design opt of Text).		echnical Issues (Chap 10	L1, L2, L3 L4	
Course outcomes: After studying this course, stu	dents will be able to:			
 Apply the knowledge of digital fundame Identify different semiconductor memor Make use of the knowledge of embedded processor cores. 	entals with combinational and Sec y used in application specific digi	tal systems		

• Inspect different types of processor and I/O controllers that are used in embedded system.

• Develop Verilog model for sequential circuits and Inspect the test pattern generation.

Question paper pattern:

- The question paper will have tenquestions.
- EachfullQuestionconsistingof16marks.Therewillbe2fullquestions(with a maximum of Three sub questions from eachmodule.
- $\bullet \quad Each full question will have subquestions covering all the topic sunder a module.$
- Thestudents will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Peter J. Ashenden, "Digital Design: An Embedded Systems Approach Using VERILOG", Elesvier, 2010.

B.E E&CE EIGTH SEMESTER SYLLABUS

Wireless Cellular and LTE 4G Broadband

B.E., VIII Semester, Electronics &Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

	Code	15EC81	IA Marks	20	
Numbe	r of	04	Exam Marks	80	
Lecture					
Total	Number	50 (10 Hours / Module)	Exam Hours	03	
		CREDITS -	- 04		
Course	Objectives : Th	his course will enable students to:			
• Ui	nderstandtheba	asicsofLTEstandardizationphasesand	lspecifications.		
• Ex	xplainthesyster	marchitectureofLTEandE-UTRAN,t C-FDMAprinciples.		use of	
	nalyzetheroleo ansferring the 1	fLTEradiointerfaceprotocolstosetup EPSbearer.	,reconfigureand release the	Radio Bearer	, for
	nalyzethemain ansmissionban	factorsaffectingLTEperformanceinc dwidth.	ludingmobilespeed and		
		Module – 1		F	RBT
				I	Level
		PbasedFlatnetworkArchitecture,LTE	Network Architecture. (Sec	: 1.4- 1.5	
ofText) Wireles BWC, 1	ss Fundament Modeling BW	PbasedFlatnetworkArchitecture,LTE als: Cellular concept, Broadband wi C – Empirical and igationofNarrowbandandBroadband	reless channel (BWC), Fadi	ng in	
ofText) Wireles BWC, 1	ss Fundament Modeling BW	als: Cellular concept, Broadband wi C – Empirical and	reless channel (BWC), Fadi	ng in	
ofText) Wireles BWC, 2 Statistic	ss Fundament Modeling BW calmodels,Mit	als: Cellular concept, Broadband wi C – Empirical and igationofNarrowbandandBroadband	reless channel (BWC), Fadi Fading (Sec 2.2 – 2.7ofTex	ng in t).	_1, L2
ofText) Wirele: BWC, I Statistic Multica Synchr OFDM	ss Fundament Modeling BW calmodels,Mit arrier Modula onization, PAI A and SC-FDM	als: Cellular concept, Broadband wi C – Empirical and igationofNarrowbandandBroadband <u>Module – 2</u> ition : OFDM basics, OFDM in	reless channel (BWC), Fadi Fading (Sec 2.2 – 2.7ofTex n LTE, Timing and Fre	ng in t). quency I	_1, L2
ofText) Wireles BWC, 1 Statistic Multica Synchr OFDM and SC Multip Diversi Multip	ss Fundament Modeling BW calmodels,Mit arrier Modula onization, PAI A and SC-FDM -FDMA in LTF le Antenna ty, Transmit	als: Cellular concept, Broadband wi C – Empirical and igationofNarrowbandandBroadband Module - 2 tion : OFDM basics, OFDM in R, SC-FDE (Sec 3.2 – 3.6 of Text). MA: OFDM with FDMA,TDMA,CDM E (Sec 4.1 – 4.3, 4.5 of Text). Fransmission and Reception: Spa Diversity, Interference cancellation betweenDiversity,Interferencesupp	reless channel (BWC), Fadi Fading (Sec 2.2 – 2.7ofTex n LTE, Timing and Fre MA, OFDMA, SC-FDMA, C and signal enhancement,	ng in t). quency I DFDMA Receive Spatial	L1, L2
ofText) Wirele: BWC, J Statistic Multica Synchr OFDM and SC Multip Diversi Multipl	ss Fundament Modeling BW calmodels,Mit arrier Modula onization, PAI A and SC-FDM -FDMA in LTH le Antenna T ty, Transmit lexing, Choice	als: Cellular concept, Broadband wi C – Empirical and igationofNarrowbandandBroadband Module - 2 tion : OFDM basics, OFDM in R, SC-FDE (Sec 3.2 – 3.6 of Text). MA: OFDM with FDMA,TDMA,CDM E (Sec 4.1 – 4.3, 4.5 of Text). Fransmission and Reception: Spa Diversity, Interference cancellation betweenDiversity,Interferencesupp	reless channel (BWC), Fadi Fading (Sec 2.2 – 2.7ofTex n LTE, Timing and Fre MA, OFDMA, SC-FDMA, C and signal enhancement,	ng in t). quency I DFDMA Receive Spatial	L1, L2
ofText) Wirele: BWC, I Statistic Multica Synchr OFDM. and SC Multip Diversi Multipl (Sec 5.	ss Fundament Modeling BW calmodels,Mit arrier Modula onization, PAI A and SC-FDM -FDMA in LTF le Antenna T ty, Transmit lexing, Choice 1 – 5.6 of Text ew and Chan	als: Cellular concept, Broadband wi C – Empirical and igationofNarrowbandandBroadband Module - 2 tion : OFDM basics, OFDM in R, SC-FDE (Sec 3.2 – 3.6 of Text). MA: OFDM with FDMA,TDMA,CDM E (Sec 4.1 – 4.3, 4.5 of Text). Fransmission and Reception: Spa Diversity, Interference cancellation betweenDiversity,Interferencesupp. t).	reless channel (BWC), Fadi Fading (Sec 2.2 – 2.7ofTex n LTE, Timing and Fre MA, OFDMA, SC-FDMA, C and signal enhancement, ressionandSpatialMultiplex	ng in t). quency I DFDMA Receive Spatial	L1, L2

Downlink Transport Channel Processing: Overview, Downlink shared channels, Downlink Control Channels, Broadcast channels, Multicast channels, Downlink physical channels, H- ARQ on Downlink(Sec 7.1 – 7.7 of Text). <u>Module – 4</u> Uplink Channel Transport Processing: Overview, Uplink shared channels, Uplink Control Information, Uplink Reference signals, Random Access Channels, H-ARQ on uplink (Sec 8.1 – 8.6 of Text). Physical Layer Procedures: Hybrid – ARQ procedures, Channel Quality Indicator CQI feedback, Precoder for closed loop MIMO Operations, Uplink channel sounding, Buffer status Reporting in uplink, Scheduling and Resource Allocation, Cell Search, Random AccessProcedures,PowerControlinuplink(Sec9.1-9.6,9.8,9.9,9.10 Text). <u>Module – 5</u> Radio Resource Management and Mobility Management : PDCP overview, MAC/RLC overview, RRC overview, Mobility Management, Inter-cell Interference Coordination(Sec 10.1 – 10.5of Text). Course Outcomes: At the end of the course, students will be ableto:	L1, L2
Module – 4 Uplink Channel Transport Processing: Overview, Uplink shared channels, Uplink Control Information, Uplink Reference signals, Random Access Channels, H-ARQ on uplink (Sec 8.1 – 8.6 of Text). Physical Layer Procedures: Hybrid – ARQ procedures, Channel Quality Indicator CQI feedback, Precoder for closed loop MIMO Operations, Uplink channel sounding, Buffer status Reporting in uplink, Scheduling and Resource Allocation, Cell Search, Random AccessProcedures, PowerControlinuplink(Sec9.1-9.6, 9.8, 9.9, 9.10 Text). Module – 5 Radio Resource Management and Mobility Management : PDCP overview, MAC/RLC Overview, RRC overview, Mobility Management, Inter-cell Interference Coordination(Sec 10.1 – 10.50f	L1, L2
Uplink Channel Transport Processing: Overview, Uplink shared channels, Uplink Control Information, Uplink Reference signals, Random Access Channels, H-ARQ on uplink (Sec 8.1 – 8.6 of Text). Physical Layer Procedures: Hybrid – ARQ procedures, Channel Quality Indicator CQI feedback, Precoder for closed loop MIMO Operations, Uplink channel sounding, Buffer status Reporting in uplink, Scheduling and Resource Allocation, Cell Search, Random AccessProcedures, PowerControlinuplink(Sec9.1-9.6,9.8,9.9,9.10 Text). Module – 5 Radio Resource Management and Mobility Management : PDCP overview, MAC/RLC overview, RRC overview, Mobility Management, Inter-cell Interference Coordination(Sec 10.1 – 10.5of Text).	L1, L2
Information, Uplink Reference signals, Random Access Channels, H-ARQ on uplink (Sec 8.1 – 8.6 of Text). Physical Layer Procedures: Hybrid – ARQ procedures, Channel Quality Indicator CQI feedback, Precoder for closed loop MIMO Operations, Uplink channel sounding, Buffer status Reporting in uplink, Scheduling and Resource Allocation, Cell Search, Random AccessProcedures,PowerControlinuplink(Sec9.1-9.6,9.8,9.9,9.10 Text). Module – 5 Radio Resource Management and Mobility Management : PDCP overview, MAC/RLC overview, RRC overview, Mobility Management, Inter-cell Interference Coordination(Sec 10.1 – 10.5of Text).	L1, L2
feedback, Precoder for closed loop MIMO Operations, Uplink channel sounding, Buffer status Reporting in uplink, Scheduling and Resource Allocation, Cell Search, Random AccessProcedures,PowerControlinuplink(Sec9.1-9.6,9.8,9.9,9.10 Text).	
Radio Resource Management and Mobility Management : PDCP overview, MAC/RLC overview, RRC overview, Mobility Management, Inter-cell Interference Coordination(Sec 10.1 – 10.5of Text).	
Radio Resource Management and Mobility Management : PDCP overview, MAC/RLC overview, RRC overview, Mobility Management, Inter-cell Interference Coordination(Sec 10.1 – 10.5of Text).	
PDCP overview, MAC/RLC overview, RRC overview, Mobility Management, Inter-cell Interference Coordination(Sec 10.1 – 10.5of Text).	L1, L2
Course Outcomes: At the end of the course, students will be ableto:	L1, L2
 Make use of the system architecture and the functional standard specified in LTE 4G. Identify the role of the layer of LTE radio interface protocols and EPS Data convergence protocol up, reconfigure and release data and voice from users. Utilize the UTRAN and EPS handling processes from set up to release including mobility manage a variety of data call scenarios. Identify the difference between uplink, down link and the physical layer procedures that provide services to upper layers. Utilize the Performance of resource management and packet data processing and transport algorithm. 	ement for the
 Question Paper pattern: The Question paper will have tenquestions. Each full Question consisting of 16marks There will be 2 full Questions (with a maximum of Three sub questions) from eachmodul Each full question will have sub questions covering all the topics under a module. The Students will have to answer 5 full Questions, selecting one full Question from each 	
Text Book:	
Arunabha Ghosh, Jan Zhang, Jefferey Andrews, Riaz Mohammed, 'FundamentalsofLTE',PrenticeHall,CommunicationsEngg.andEmerging Technologies.	

Reference Books :

- 1. LTE for UMTS Evolution to LTE-Advanced' HarriHolma and AnttiToskala, Second Edition 2011, John Wiley & Sons, Ltd. Print ISBN: 9780470660003.
- 2. 'EVOLVED PACKET SYSTEM (EPS) ; THE LTE AND SAE EVOLUTION OF 3G UMTS' by Pierre Lescuyer and Thierry Lucidarme, 2008, John Wiley & Sons, Ltd. PrintISBN:978-0-470-05976-0.
- 'LTE The UMTS Long Term Evolution ; From Theory to Practice' by StefaniaSesia,IssamToufik,andMatthewBaker,2009JohnWiley&Sons Ltd, ISBN978-0-470-69716-0.

Web Link and Video Lectures:

1. https://www.coursera.org/courses?query=wireless

2. https://www.classcentral.com/course/wireless-communications-7503

FIBER OPTICS and NETWORKS B.E., VIII Semester, Electronics &CommunicationEngineering [As per Choice Based Credit System (CBCS)]

Mumber of Lecture Hours/Week 4 Exam Marks 80 Total Number of Lecture Hours 50(10 Hours / Module) Exam Hours 03 Course Objectives: This course will enable students to: 03 03 Course Objectives: This course will enable students to: 04 03 Understandthetransmissioncharacteristicsandlossesinopticalfiber. 5 16 Studyofopticalcomponentsanditsapplicationsinopticalcommunication networks. 1 12 Learnthenetworkstandardsinopticalfiberandunderstandthenetwork architectures along with itsfunctionalities. RBT Lew Optical fiber Communications: Historical development, The general system, Advantages of optical fiber communication, Optical fiber waveguides: Ray theory transmission, Modes in planarguide,Phaseandgroupvelocity,Cylindricalfiber:Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effectiverefractive index. Fiber Materials, Photonic crystal fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber. L1, L2 Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber couplers. (Text 2) L1, L2 Module -3 Opticalsources:EnergyBands,DirectandIndirectBandgaps, LightEmitingdiodes:LEDStructures,LightSourceMaterials, Quantum Efficiency and LED Power, Modulatio	Subject Code	15EC82	IA Marks	20		
Hours/Week 4 Exam Marks 80 Total Number of Lecture Hours 50(10 Hours / Module) Exam Hours 03 CREDITS – 04 Course Objectives: This course will enable students to: Learnthebasicprincipleofopticalfibercommunication withdifferent modes of lightpropagation. Understandthetransmissioncharacteristicsandlossesinopticalfiber. Studyofopticalcomponentsanditsapplicationsinopticalcommunication networks. Learnthenetworkstandardsinopticalfiberandunderstandthenetwork architectures along with itsfunctionalities. Module -1 Module -1 RBT Lew Optical fiber Communication, Optical fiber waveguides: Ray theory transmission, Modes in planarguide.Phaseandgroupvelocity,Cylindricalfiber:Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effectiverefractive index. Fiber Materials, Photonic crystal fibers. (Text 2) L1, L2 Module -2 Module -2 Transmission characteristics of optical fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber. L1, L2 Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber couplers. (Text 2) L1, L2 Module -3 Opticalsources:EnergyBands,DirectandIndirectBandgaps, LightEmitingdiodes:LEDStructures,LightSourceMate						
Lecture Hours Module) Exam Hours 0.3 CREDITS – 04 Course Objectives: This course will enable students to: Learnthebasicprincipleofopticalfibercommunication withdifferent modes of lightpropagation. Understandthetransmissioncharacteristicsandlossesinopticalfiber. Studyofopticalcomponentsanditsapplicationsinopticalcommunication networks. Earnthenetworkstandardsinopticalfiberandunderstandthenetwork architectures along with itsfunctionalities. Module -1 RBT Lew Optical fiber Communications: Historical development, The general system, Advantages of optical fiber communication, Optical fiber waveguides: Ray theory transmission, Modes in planarguide, Phaseandgroupvelocity, Cylindricalfiber:Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effectiverefractive index. Fiber Materials, Photonic crystal fiber. (Text 2) Module -2 Transmission characteristics of optical fiber: Attenuation, Material absorption loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber. L1, L2 Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber alignment mad joint loss, Fiber splices, LEDStructures, LightSourceMaterials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser DiodestructuresandRadiationPatterns:Singlem		4	Exam Marks	80		
Lecture Hours Module) CREDITS - 04 Course Objectives: This course will enable students to: • Learnthebasicprincipleofopticalfibercommunicationwithdifferent modes of lightpropagation. • Understandthetransmissioncharacteristicsandlossesinopticalfiber. • Studyofopticalcomponentsanditsapplicationsinopticalcommunication networks. • Learnthenetworkstandardsinopticalfiberandunderstandthenetwork architectures along with itsfunctionalities. Module -1 RBT Leve Optical fiber Communications: Historical development, The general system, Advantages of optical fiber communication, Optical fiber waveguides: Ray theory transmission, Modes in planarguide,Phaseandgroupvelocity,Cylindricalfiber:Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effectiverefractive index. Fiber Materials, Photonic crystal fibers. (Text 2) L1, L2 Module -2 Transmission characteristics of optical fiber: Attenuation, Material absorption losse, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber. L1, L2 Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber couplers. (Text 2) L1, L2 Module -3 Opticalsources:EnergyBands,DirectandIndirectBandgaps, Lingthermittingdiodes:LEDStructures,LightSourceMaterials, Quantum Efficiency and LED Power, Modulation, Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Eff	Total Number of	50(10 Hours /	Exam Hours	02		
Course Objectives: This course will enable students to: • Learnthebasicprincipleofopticalfibercommunicationwithdifferent modes of lightpropagation. • Understandthetransmissioncharacteristicsandlossesinopticalfiber. • Studyofopticalcomponentsanditsapplicationsinopticalcommunication networks. • Learnthenetworkstandardsinopticalfiberandunderstandthenetwork architectures along with itsfunctionalities. • Module -1 RBT Lew Optical fiber Communications: Historical development, The general system, Advantages of optical fiber communication, Optical fiber waveguides: Ray theory transmission, Modes in planarguide, Phaseandgroupvelocity, Cylindricalfiber: Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effectiverefractive index. Fiber Materials, Photonic crystal fibers. (Text 2) L1, L2 Module -2 Transmission characteristics of optical fiber: Attenuation, Material absorption losse, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber couplers. (Text 2) L1, L2 Module -3 Optical Sources: EnergyBands,DirectandIndirectBandgaps, LightSourceMaterials, Quantum Efficiency and LED Power, Modulation, Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser Diodestructures.andRadiationPatterns:Singlemodelasers. L1, L2 Photodetectors: Physical principles of Photodiodes, Photodetector noise, Detector L1	Lecture Hours	Module)	Exam nours	05		
Learnthebasicprincipleofopticalfibercommunicationwithdifferent modes of lightpropagation. Understandthetransmissioncharacteristicsandlossesinopticalfiber. Studyofopticalcomponentsanditsapplicationsinopticalcommunication networks. Learnthenetworkstandardsinopticalfiberandunderstandthenetwork architectures along with itsfunctionalities. Module -1 Module -1 RBT Lew Optical fiber Communication, Optical fiber waveguides: Ray theory transmission, Modes in planarguide, Phaseandgroupvelocity, Cylindricalfiber:Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode fibers, Graded index fibers, Cutoff wavelength, Model diameter, effectiverefractive index. Fiber Materials, Photonic crystal fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber: Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber couplers. (Text 2) Module -3 OpticalSources: EnergyBands,DirectandIndirectBandgaps, L1, L2 LightEmittingdiodes:LEDStructures,LightSourceMaterials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser DiodestructuresandRadiationPatterns:Singlemodelasers. Photodetectors: Physical principles of Photodiodes, Photodetector noise, Detector						
lightpropagation. • Understandthetransmissioncharacteristicsandlossesinopticalfiber. • Studyofopticalcomponentsanditsapplicationsinopticalcommunication networks. • Learnthenetworkstandardsinopticalfiberandunderstandthenetwork architectures along with itsfunctionalities. • Module -1 RBT Lew Optical fiber Communications: Historical development, The general system, Advantages of optical fiber communication, Optical fiber waveguides: Ray theory transmission. Modes in planarguide,Phaseandgroupvelocity,Cylindricalfiber:Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effectiverefractive index. Fiber Materials, Photonic crystal fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber. L1, L2 Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber couplers. (Text 2) L1, L2 Module -3 Opticalsources:EnergyBands,DirectandIndirectBandgaps, LightEmittingdiodes:LEDStructures,LightSourceMaterials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser DiodestructuresandRadiationPatterns:Singlemodelasers. L1, L2 Photodetectors: Physical principles of Photodiodes, Photodetector noise, Detector L1, L2	Course Objectives: This	course will enable stude	ents to:			
Studyofopticalcomponentsanditsapplicationsinopticalcommunication networks. Learnthenetworkstandardsinopticalfiberandunderstandthenetwork architectures along with itsfunctionalities. Module -1 Module -1 RBT Lew Optical fiber Communications: Historical development, The general system, Advantages of optical fiber communication, Optical fiber waveguides: Ray theory transmission, Modes in planarguide,Phaseandgroupvelocity,Cylindricalfiber:Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effectiverefractive index. Fiber Materials, Photonic crystal fibers. (Text 2) Module -2 Transmission characteristics of optical fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber. Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber couplers. (Text 2) Module -3 Opticalsources:EnergyBands,DirectandIndirectBandgaps, LightEmittingdiodes:LEDStructures,LightSourceMaterials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser DiodestructuresandRadiationPatterns:Singlemodelasers. Photodetectors: Physical principles of Photodiodes, Photodetector noise, Detector		pleofopticalfibercomm	nunication with different mo	des of		
Learnthenetworkstandardsinopticalfiberandunderstandthenetwork architectures along with itsfunctionalities. <u>Module -1</u> <u>Module -1</u> <u>RBT Leve</u> Optical fiber Communications: Historical development, The general system, Advantages of optical fiber communication, Optical fiber waveguides: Ray theory transmission, Modes in planarguide,Phaseandgroupvelocity,Cylindricalfiber:Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effectiverefractive index. Fiber Materials, Photonic crystal fiber: (Text 2) <u>Module -2</u> Transmission characteristics of optical fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber. Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber couplers. (Text 2) <u>Module -3</u> Opticalsources:EnergyBands,DirectandIndirectBandgaps, LightEmittingdiodes:LEDStructures,LightSourceMaterials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser DiodestructuresandRadiationPatterns:Singlemodelasers. Photodetectors: Physical principles of Photodiodes, Photodetector noise, Detector	• Understandthetrans	nissioncharacteristicsa	andlossesinopticalfiber.			
Learnthenetworkstandardsinopticalfiberandunderstandthenetwork architectures along with itsfunctionalities. <u>Module -1</u> <u>Module -1</u> <u>RBT Leve</u> Optical fiber Communications: Historical development, The general system, Advantages of optical fiber communication, Optical fiber waveguides: Ray theory transmission, Modes in planarguide,Phaseandgroupvelocity,Cylindricalfiber:Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effectiverefractive index. Fiber Materials, Photonic crystal fiber: (Text 2) <u>Module -2</u> Transmission characteristics of optical fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber. Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber couplers. (Text 2) <u>Module -3</u> Opticalsources:EnergyBands,DirectandIndirectBandgaps, LightEmittingdiodes:LEDStructures,LightSourceMaterials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser DiodestructuresandRadiationPatterns:Singlemodelasers. Photodetectors: Physical principles of Photodiodes, Photodetector noise, Detector	Studyofopticalcomp	onentsanditsapplicatio	onsinopticalcommunication	networks.		
Optical fiber Communications: Historical development, The general system, Advantages of optical fiber communication, Optical fiber waveguides: Ray theory transmission, Modes in planarguide, Phaseandgroupvelocity, Cylindricalfiber: Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effectiverefractive index. Fiber Materials, Photonic crystal fiber: (Text 2)L1, L2Module -2Module -2Transmission characteristics of optical fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber.L1, L2Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber couplers. (Text 2)L1, L2Module -3Opticalsources: EnergyBands, DirectandIndirectBandgaps, LightEmittingdiodes: LEDStructures, LightSourceMaterials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser DiodestructuresandRadiationPatterns:Singlemodelasers.L1, L2Photodetectors: Physical principles of Photodiodes, Photodetector noise, DetectorL1, L2		ndardsinopticalfiberan	dunderstandthenetwork are	chitectures alon	g with	
Optical fiber Communications: Historical development, The general system, Advantages of optical fiber communication, Optical fiber waveguides: Ray theory transmission, Modes in planarguide, Phaseandgroupvelocity, Cylindricalfiber: Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effectiverefractive index. Fiber Materials, Photonic crystal fiber: (Text 2)L1, L2Module -2Module -2Transmission characteristics of optical fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber.L1, L2Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber couplers. (Text 2)L1, L2Module -3Opticalsources: EnergyBands, DirectandIndirectBandgaps, LightEmittingdiodes: LEDStructures, LightSourceMaterials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser DiodestructuresandRadiationPatterns:Singlemodelasers.L1, L2Photodetectors: Physical principles of Photodiodes, Photodetector noise, DetectorL1, L2		Module	_1		RRT Level	
Advantages of optical fiber communication, Optical fiber waveguides: Ray theory transmission, Modes in planarguide,Phaseandgroupvelocity,Cylindricalfiber:Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effectiverefractive index. Fiber Materials, Photonic crystal fibers. (Text 2) Module -2 Transmission characteristics of optical fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber. Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber couplers. (Text 2) Module -3 Opticalsources: EnergyBands,DirectandIndirectBandgaps, LightEmittingdiodes: LEDStructures,LightSourceMaterials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser DiodestructuresandRadiationPatterns:Singlemodelasers. Photodetectors: Physical principles of Photodiodes, Photodetector noise, Detector	Ontical fiber Comm			eral system		
Transmission characteristics of optical fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber.L1, L2Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber couplers. (Text 2)Module -3Opticalsources:EnergyBands,DirectandIndirectBandgaps, LightEmittingdiodes:LEDStructures,LightSourceMaterials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser DiodestructuresandRadiationPatterns:Singlemodelasers.L1, L2Photodetectors: Physical principles of Photodiodes, Photodetector noise, DetectorL1, L2	Advantages of optical fiber communication, Optical fiber waveguides: Ray theory transmission, Modes in planarguide, Phaseandgroupvelocity, Cylindrical fiber: Modes, Step index fibers, Graded index fibers, Single mode fibers, Cutoff wavelength, Mode field diameter, effectiverefractive					
losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index fiber.Optical Fiber Connectors: Fiber alignment and joint loss, Fiber splices, Fiber connectors, Fiber couplers. (Text 2)Module -3Opticalsources: EnergyBands, DirectandIndirectBandgaps, LightEmittingdiodes: LEDStructures, LightSourceMaterials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser DiodestructuresandRadiationPatterns: Singlemodelasers.Photodetectors: Physical principles of Photodiodes, Photodetector noise, Detector		Module	-2			
Fiber couplers. (Text 2) Module -3 Opticalsources: EnergyBands, DirectandIndirectBandgaps, L1, L2 LightEmittingdiodes: LEDStructures, LightSourceMaterials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser DiodestructuresandRadiationPatterns: Singlemodelasers. Photodetectors: Physical principles of Photodiodes, Photodetector noise, Detector	Transmission characteristics of optical fiber: Attenuation, Material absorption losses, Linear scattering losses, Nonlinear scattering losses, Fiber bend loss, Dispersion, Chromatic dispersion, Intermodal dispersion: Multimode step index				L1, L2	
Opticalsources:EnergyBands,DirectandIndirectBandgaps,L1, L2LightEmittingdiodes:LEDStructures,LightSourceMaterials,Quantum Efficiencyand LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rateequation,ExternalQuantum Efficiency,Resonant frequencies,LaserDiodestructuresandRadiationPatterns:Singlemodelasers.Photodetectors:Physical principles of Photodiodes,Photodetectors:Photodetector		s: Fiber alignment and	joint loss, Fiber splices, Fibe	er connectors,		
Opticalsources:EnergyBands,DirectandIndirectBandgaps, LightEmittingdiodes:LEDStructures,LightSourceMaterials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser DiodestructuresandRadiationPatterns:Singlemodelasers.L1, L2Photodetectors: Physical principles of Photodiodes, Photodetector noise, DetectorEtector			Module -3			
	Opticalsources:EnergyBands,DirectandIndirectBandgaps, LightEmittingdiodes:LEDStructures,LightSourceMaterials, Quantum Efficiency and LED Power, Modulation. Laser Diodes: Modes and Threshold conditions, Rate equation, External Quantum Efficiency, Resonant frequencies, Laser				L1, L2	
	•	al principles of Photo	diodes, Photodetector nois	se, Detector		
Optical Receiver: Optical Receiver Operation: Error sources,	Optical Receiver: Optic	cal Receiver Operation	a: Error sources,			

UDM Commenter of Commenter Operations (WDM, Operational Driving)	
WDM Concepts and Components: Overview of WDM: Operational Principles of WDM, WDM standards, Mach-Zehnder Interferometer Multiplexers, Isolators and Circulators, Fiber grating filters, Dielectric Thin-Film Filters, Diffraction Gratings, Active Optical Components, Tunable lightsources,	L1, L2
Optical amplifiers: Basic application and Types, Semiconductor optical amplifiers, Erbium Doped Fiber Amplifiers, Raman Amplifiers, Wideband Optical Amplifiers. (Text1)	
Module -5	
Optical Networks:Optical network evolution and concepts: Optical networking terminology, Optical network nodeand switchingelements, Wavelengthdivisionmultiplexednetworks, Public telecommunication network overview. Optical network transmission modes, layers and protocols: Synchronous networks, Asynchronous transfer mode, OSI reference model, Optical transport network, Internet protocol, Wavelength routingnetworks:Routingandwavelengthassignment,Optical switching networks: Optical circuit switched networks, packet switched networks, Multiprotocol Label Switching, Optical burst switching networks, Optical network deployment: Long- haul networks, Metropoliton area networks, Accessnetworks, Local area networks. (Text 2)	L1, L2
Course Outcomes: At the end of the course, students will be ableto:	
Classify and explain the working of optical fiber with different modes o	f signal
 propagation. Utilize the concepts of transmission characteristics to obtain the losses fiber communication. 	in optical
 Identify the construction and working principle of optical connectors, m and amplifiers. 	ultiplexers
• Analyze the constructional features and the characteristics of optical sou	arces and
detectors.	andards
 Examine the networking aspects of optical fiber and describe various sta associated with it. 	
Examine the networking aspects of optical fiber and describe various sta associated with it. Question Paper pattern:	
 Examine the networking aspects of optical fiber and describe various state associated with it. Question Paper pattern: The Question paper will have tenquestions. 	
Examine the networking aspects of optical fiber and describe various sta associated with it. Question Paper pattern:	n eachmodule.
 Examine the networking aspects of optical fiber and describe various state associated with it. Question Paper pattern: The Question paper will have tenquestions. Each full Question consisting of 16marks 	

Education(India) Private Limited, 2015. ISBN:1-25-900687-5.

 John M Senior, Optical Fiber Communications, Principles and Practice, 3rdEdition, Pearson Education, 2010, ISBN:978-81-317-3266-3

Reference Book : JosephCPalais,FiberOpticCommunication,PearsonEducation,2005, ISBN:0130085103

Web Link and Video Lectures: 1. https://www.classcentral.com/tag/fiber-optics 2. https://swayam.gov.in/nd1_noc20_ph07/preview

<u>Micro Electro Mechanical Systems</u> B.E., VIII Semester, Electronics &Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC831	IA Marks	20	
Number ofLecture	03	Exam	80	
Hours/Week		marks		
Total Number of	40	Exam	03	
Lecture Hours	(8 Hours per Module)	Hours		
	CREDITS -	- 03	·	
5	is course will enable students to:			
	erviewofmicrosystems, theirfabric	cationand application	nareas.	
	ciples of several MEMSdevices.			
-	ematicalandanalyticalmodelsofMI	EMSdevices.		
	s to fabricate MEMSdevices.			
• Various applic	cation areas where MEMS device	s canbe used.		
	Module 1			RBT
				Level
Overview of MEMS and Microsystems: MEMS and Microsystem, Typical MEMS				T 1 T A
	-			L1, L2
and Microsystems H	Products, Evolution of Microf	abrication, Micros	ystems and	L1, L2
and Microsystems H Microelectronics, Mul	Products, Evolution of Microf tidisciplinary Nature of Microsys	abrication, Micros	ystems and	L1, L2
and Microsystems H	Products, Evolution of Microf tidisciplinary Nature of Microsys	abrication, Micros	ystems and	L1, L2
and Microsystems H Microelectronics, Mul	Products, Evolution of Microf tidisciplinary Nature of Microsys	abrication, Micros	ystems and	L1, L2
and Microsystems H Microelectronics, Mul	Products, Evolution of Microf tidisciplinary Nature of Microsys	fabrication, Micros stems, Miniaturizatio	ystems and	L1, L2
and Microsystems F Microelectronics, Mul Applications and Marl	Products, Evolution of Microf tidisciplinary Nature of Microsys cets.	Sabrication, Micros stems,Miniaturizatio	ystems and n.	L1, L2
and Microsystems F Microelectronics, Mul Applications and Marl Working Principles of	Products, Evolution of Microf tidisciplinary Nature of Microsys cets. Module 2	Cabrication, Micros stems, Miniaturizatio	ystems and n.	
and Microsystems H Microelectronics, Mul Applications and Marl Working Principles of MEMS with Microact	Products, Evolution of Microf tidisciplinary Nature of Microsys kets. Module 2 of Microsystems: Introduction, uators, Microaccelerometers, Mic	Cabrication, Micros stems, Miniaturizatio 2 Microsensors, Mic crofluidics.	ystems and n. croactuation,	
and Microsystems H Microelectronics, Mul Applications and Mark Working Principles of MEMS with Microact Engineering S	Products, Evolution of Microf tidisciplinary Nature of Microsys cets. Module 2 of Microsystems: Introduction, uators, Microaccelerometers, Mic cience for Microsyste	Cabrication, Micros Stems, Miniaturizatio 2 Microsensors, Mic crofluidics. ems Design	ystems and n. croactuation, and	
and Microsystems F Microelectronics, Mul Applications and Mark Working Principles of MEMS with Microact Engineering S Fabrication: Introduc	Products, Evolution of Microf tidisciplinary Nature of Microsys kets. Module 2 of Microsystems: Introduction, uators, Microaccelerometers, Mic cience for Microsyste tion, Molecular Theory of Matter	Cabrication, Micros Stems, Miniaturizatio 2 Microsensors, Mic crofluidics. ems Design	ystems and n. croactuation, and	
and Microsystems H Microelectronics, Mul Applications and Mark Working Principles of MEMS with Microact Engineering S	Products, Evolution of Microf tidisciplinary Nature of Microsys kets. Module 2 of Microsystems: Introduction, uators, Microaccelerometers, Mic cience for Microsyste tion, Molecular Theory of Matter	Cabrication, Micros Stems, Miniaturizatio 2 Microsensors, Mic crofluidics. ems Design	ystems and n. croactuation, and	
and Microsystems F Microelectronics, Mul Applications and Mark Working Principles of MEMS with Microact Engineering S Fabrication: Introduc	Products, Evolution of Microf tidisciplinary Nature of Microsys kets. Module 2 of Microsystems: Introduction, uators, Microaccelerometers, Mic cience for Microsyste tion, Molecular Theory of Matter	Cabrication, Micros Stems, Miniaturizatio 2 Microsensors, Mic crofluidics. ems Design	ystems and n. croactuation, and	
and Microsystems H Microelectronics, Mul Applications and Marl Working Principles of MEMS with Microact Engineering S Fabrication: Introduc Plasma Physics,Electr	Products, Evolution of Microf tidisciplinary Nature of Microsys kets. Module 2 of Microsystems: Introduction, uators, Microaccelerometers, Microsyste cience for Microsyste tion, Molecular Theory of Matter ochemistry. Module 3	Cabrication, Micros Stems, Miniaturization 2 Microsensors, Micros crofluidics. ems Design and Inter- molecula 3	ystems and n. croactuation, and ur Forces,	
and Microsystems H Microelectronics, Mul Applications and Mark Working Principles of MEMS with Microact Engineering S Fabrication: Introduc Plasma Physics,Electr Engineering Mechanic	Products, Evolution of Microf tidisciplinary Nature of Microsys cets. Module 2 of Microsystems: Introduction, uators, Microaccelerometers, Microsyste ccience for Microsyste tion, Molecular Theory of Matter ochemistry. Module 3 cs for Microsystems Design: Intro	Cabrication, Micros Stems, Miniaturization 2 Microsensors, Microsensors, Microsensors, Microsensors, Microfluidics. ems Design and Inter- molecula 3 oduction, Static Ben	ystems and n. croactuation, and r Forces, ding of Thin	
and Microsystems H Microelectronics, Mul Applications and Mark Working Principles of MEMS with Microact Engineering S Fabrication: Introduc Plasma Physics,Electr Engineering Mechanic	Products, Evolution of Microf tidisciplinary Nature of Microsys cets.	Cabrication, Micros Stems, Miniaturizatio 2 Microsensors, Micros crofluidics. ems Design and Inter- molecula 3 oduction, Static Ben racture Mechanics,	ystems and n. croactuation, and r Forces, ding of Thin	L1, L2
and Microsystems H Microelectronics, Mul Applications and Mark Working Principles of MEMS with Microact Engineering S Fabrication: Introduc Plasma Physics,Electr Engineering Mechanic	Products, Evolution of Microf tidisciplinary Nature of Microsys cets. Module 2 of Microsystems: Introduction, uators, Microaccelerometers, Microsyste ccience for Microsyste tion, Molecular Theory of Matter ochemistry. Module 3 cs for Microsystems Design: Intro	Cabrication, Micros Stems, Miniaturizatio 2 Microsensors, Micros crofluidics. ems Design and Inter- molecula 3 oduction, Static Ben racture Mechanics,	ystems and n. croactuation, and r Forces, ding of Thin	L1, L2
and Microsystems H Microelectronics, Mul Applications and Mark Working Principles of MEMS with Microact Engineering S Fabrication: Introduc Plasma Physics,Electr Engineering Mechanic	Products, Evolution of Microf tidisciplinary Nature of Microsys cets.	Cabrication, Micros Stems, Miniaturizatio 2 Microsensors, Micros crofluidics. ems Design and Inter- molecula 3 oduction, Static Ben racture Mechanics,	ystems and n. croactuation, and r Forces, ding of Thin	L1, L2
and Microsystems H Microelectronics, Mul Applications and Mark Working Principles of MEMS with Microact Engineering S Fabrication: Introduc Plasma Physics,Electr Engineering Mechanic	Products, Evolution of Microf tidisciplinary Nature of Microsys cets.	Cabrication, Micros Stems, Miniaturizatio 2 Microsensors, Micros crofluidics. ems Design and Inter- molecula 3 oduction, Static Ben racture Mechanics,	ystems and n. croactuation, and r Forces, ding of Thin	L1, L2

Scaling Laws in Miniaturization: Introduction, Scaling in Geometry, Scaling in Rigid-	L1,L2,L3
Body Dynamics, Scaling in Electrostatic Forces, Scaling in Fluid Mechanics, Scaling	,,
in Heat	
Transfer.	
Module 5	
Overview of Micromanufacturing: Introduction, Bulk	L1,L2
Micromanufacturing, Surface Micromachining, The LIGA Process,	
Summary on Micromanufacturing.	
Course Outcomes: After studying this course, students will be ableto:	
 AppreciatethetechnologiesrelatedtoMicroElectroMechanicalSystems. 	
 UnderstanddesignandfabricationprocessesinvolvedwithMEMS devices. 	
AnalysetheMEMSdevicesanddevelopsuitablemathematicalmodels	
Know various application areas for MEMSdevice	
Question paper pattern:	
• Thequestionpaper will have 10 full questions carrying equal marks.	
• Eachfullquestionconsistsof16markswithamaximumofThreesub questions.	
• Therewillbe2fullquestionsfromeachmodulecoveringallthetopics of themodule	
• Thestudentswillhavetoanswer5fullquestions, selecting one full question from eachmodule.	
Text Book:	
Tai-Ran Hsu, MEMS and Micro systems: Design, Manufacture and Nanoscale Engineerin	ng, 2 nd Ed,
Wiley.	
Reference Books:	
1. HansH.Gatzen,VolkerSaile,JurgLeuthold,MicroandNano Fabrication: Tools and Processes, Springer,2015.	
2. Dilip Kumar Bhattacharya, Brajesh Kumar Kaushik,	
MicroelectromechanicalSystems(MEMS), CenageLearning.	

SPEECH PROCESSING B.E., VIII Semester, Electronics & Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC832	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Numberof	40 (8 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CRED	ITS – 03		
Course Objectives: This co	ourse enables students to:			
• Introduce the model	s for speechproduction			
• Developtimeandfree	juencydomaintechniquesforest:	matingspeechparameter	s	
• Introduce a predictiv	ve technique for speechcompre	ssion		
• Providefundamental speaker identification	knowledgerequiredtounderstan nsystems.	dandanalysespeech reco	gnition, synthesis and	l
	Mo	dules		
	Module-1			RBT
				Level
Fourier Representation of	n Speech Production: The P of Speech, The Acoustic The ct, Digital Models for Sampled	eory of Speech Product		L1, L2
Time -Domain Methods	Module-2 for Speech Processing: Intro	duction to Short- Time	Analysis of Speech,	L1, L2
Short-Time Energy and Autocorrelation Function,	for Speech Processing: Intro Short-Time Magnitude, Short The Modified Short-Time Auto	Time Zero-Crossing Ra	ate, The Short-Time	L1, L2
Short-Time Energy and	for Speech Processing: Intro Short-Time Magnitude, Short The Modified Short-Time Auto	Time Zero-Crossing Ra	ate, The Short-Time	L1, L2
Short-Time Energy and Autocorrelation Function, Magnitude DifferenceFund Frequency Domain Ro Analysis, Addition(OLA),Methodo	for Speech Processing: Intro Short-Time Magnitude, Short- The Modified Short-Time Auto ction. <u>Module-3</u> epresentations: Discrete-Tim Spectrographic fSynthesis,FilterBankSummati Two-Channel Filter Banks, Im	Time Zero-Crossing Ra correlation Function, The le Fourier Analysis, Displays, on(FBS)Methodof S	short-Time Fourier Overlap Synthesis, Time-	L1, L2
Short-Time Energy and Autocorrelation Function, Magnitude DifferenceFund Frequency Domain Re Analysis, Addition(OLA),Methodo Decimated Filter Banks,	for Speech Processing: Intro Short-Time Magnitude, Short- The Modified Short-Time Auto ction. <u>Module-3</u> epresentations: Discrete-Tim Spectrographic fSynthesis,FilterBankSummati Two-Channel Filter Banks, Im	Time Zero-Crossing Ra correlation Function, The le Fourier Analysis, Displays, on(FBS)Methodof S	short-Time Fourier Overlap Synthesis, Time-	
Short-Time Energy and Autocorrelation Function, Magnitude DifferenceFund Frequency Domain Ro Analysis, Addition(OLA),Methodo Decimated Filter Banks, FFT, OLA Revisited, Mo The Cepstrum and Hom Homomorphic Analysis of Cepstrum of Speech, Ho	for Speech Processing: Intro Short-Time Magnitude, Short- The Modified Short-Time Auto ction. <u>Module-3</u> epresentations: Discrete-Tim Spectrographic fSynthesis,FilterBankSummati Two-Channel Filter Banks, In difications of theSTFT. <u>Module-4</u> nomorphic Speech Processing of the Speech Model, Comput pmomorphic Filtering of Natu	Time Zero-Crossing Ra correlation Function, The Displays, on(FBS)Methodof S plementation of the FB	Ate, The Short-Time Short-Time Average Short-Time Fourier Overlap Synthesis, Time- S Method Using the ns for Convolution, ostrum and Complex	
Short-Time Energy and Autocorrelation Function, Magnitude DifferenceFund Frequency Domain Ra Analysis, Addition(OLA),Methodo Decimated Filter Banks, FFT, OLA Revisited, Mo	for Speech Processing: Intro Short-Time Magnitude, Short- The Modified Short-Time Auto ction. <u>Module-3</u> epresentations: Discrete-Tim Spectrographic fSynthesis,FilterBankSummati Two-Channel Filter Banks, In difications of theSTFT. <u>Module-4</u> nomorphic Speech Processing of the Speech Model, Comput pmomorphic Filtering of Natu	Time Zero-Crossing Ra correlation Function, The Displays, on(FBS)Methodof S plementation of the FB	Ate, The Short-Time Short-Time Average Short-Time Fourier Overlap Synthesis, Time- S Method Using the ns for Convolution, ostrum and Complex	L1, L2

redictive Analysis, Computation of the Gain for the Model, Frequency Domain Interpretations of inear Predictive Analysis, Solution of the LPC Equations, The Prediction Error Signal, Some roperties of the LPC Polynomial A(z), Relation of Linear Predictive Analysis to Lossless Tube Iodels, Alternative Representations of the LP Parameters.	L3
Course outcomes: Upon completion of the course, students will be able to:	
Modelspeechproductionsystemanddescribethefundamentalsofspeech.	
• Extract and compare different speechparameters.	
Choose an appropriate speech model for a given application.	
Analysespeechrecognition, synthesis and speaker identification systems	
Question paper pattern:	
• The question paper will have tenquestions.	
• Each full question consists of 16marks.	
 Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule. Each full question will have sub questions covering all the topics under a module. Thestudentswillhavetoanswer5fullquestions, selecting one full question from eachmodule. 	
Text Book : Theory and Applications of Digital Speech Processing- Rabiner and Schafer, Pearson Education 202	1
Reference Books:	
3. Fundamentals of Speech Recognition- Lawrence Rabiner and Biing-Hwang Juang, Pearson Education, 2003.	
4. Speech and Language Processing—An Introduction to Natural Language Processing, Computationa Linguistics, andSpeechRecognition- Jurafsky and James H Martin, Pearson Prentice Hall2009.	ıl

	Radar Engineeri	ng	
BE	.,VIIISemester,Electronics&Com		
D.L	TelecommunicationEn		
	[As per Choice Based Credit Syst		
Subject Code	15EC833	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of Lecture Hours	40 (8 Hours / Module)	Exam Hours	03
	CREDITS – 0	3	1
• Understand various techno	will enable students to: lamentals and analyze the radarsig logies involved in the design of r I,Dopplerandtrackingradarsandth	adar transmitters and receivers.	
Modules			RBT
			Level
Module-1			
Average transmitterPower.		Unambiguous Range, Rac OutyCycle, Peak Transmitter Pow	
Simpleformofthe RadarFrequencies,Application ofText)	RadarEquation sofRadar,TheOriginsofRadar,Illus	,RadarBlockDiagramandOperation, strative Problems. (Chapter 1	
Module-2			
Detectable Signal, Receiver N Alarm Time and Probability, F Radar Cross Section of Target	oise, SNR, Modified Radar Range Probability of Detection, s: simple targets – sphere, cone-sp	tection of signal in Noise, Minimu e Equation, Envelope Detector — Fal ohere, Transmitter Power, PRF and trative Problems. (Chapter 2 of Text,	
Module-3			
MTI and Pulse Doppler Rada Sweep to Sweep PowerAmplifierTransmitter,D — Frequency Response of S Improvement Factor, N- Pulse Digital MTI Processing	subtraction and Delay elayLineCancelers Single Delay- Line Canceler, Bl Delay-Line Canceler,		h– L3 TI
Module-4			
Monopulse (one-and two-coor	cackingRadarSystems,Monopulse dinates), Phase ComparisonMono n Tracking, Block Diagram of Coni	pulse.	L1, L2, 00 L3

Module-5	
The Radar Antenna: Functions of The Radar Antenna, Antenna Parameters, Reflector Antennas and Electronically Steered Phased array Antennas. (Chapter 9: 9.1, 9.2 9.4, 9.5 ofText) Radar Receiver: The Radar Receiver, Receiver Noise Figure, Super HeterodyneReceiver,DuplexersandReceiversProtectors,RadarDisplays. (Chapter 11 of Text)	L1, L2, L3
Course outcomes: At the end of the course, students will be ableto:	
• Identify the fundamentals of radar, tracking and antennas	
• Make use of the radar equation and process digital MTI with its applications	
• Utilize principle of doppler frequency shift and explain tracking radar antennas	
Develop tracking radar and sequential lobbing	
Analyze radar antenna parameters and tracking range	
Question paper pattern:	
• The question paper will have tenquestions.	
Each full Question consisting of 16marks	
• Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule.	
• Eachfullquestion will have subquestions covering all the topics under a module.	
• Thestudentswillhavetoanswer5fullquestions, selecting one fullquestion from each module.	
Text Book: Introduction to Radar Systems- Merrill I Skolink, 3e, TMH, 2001.	
 Reference Books: Radar Principles, Technology, Applications — Byron Edde, Pearson Education, 2004. Radar Principles – Peebles. Jr, P.Z. Wiley. New York, 1998. PrinciplesofModemRadar:BasicPrinciples–MarkA.Rkhards,JamesA. Scheer, William A. HoIm. 	

MACHINE LEARNING B.E., VIII Semester, Electronics & Communication Engineering/ Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC834	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week	05		80	
Total Number	40 (8 Hours / Module)	Exam Hours	03	
of Lecture				
Hours				
		DITS – 03		
Course Objectives: This cour	se will enable students to:			
Introducesomeconc	eptsandtechniquesthatarecor	etoMachineLearning.		
• Understand learning	g and decisiontrees.			
Acquireknowledge	ofneuralnetworks,Bayesiante	echniquesandinstantbased lear	ning.	
	cal learning and reinforcedle	-	-	
	Mo	odules		
	Module-1			RBT Level
	ngsystems,PerspectivesandIs		ersion	L1, L2
Spaces	and Candidate	Elimination A	lgorithm,	
Inductive bias.				
	Module-2		.	
		on, Hypothesis Space Search l Network Representation, I		L1, L2
Multilayer Networks and		r retwork representation, r	erceptions,	
Back Propagation Algorithm	ns.			
	Module-3			
Bayesian and Computatio		em, Bayes Theorem Concep	t Learning,	L1, L2
Maximum	Likelihood, Minim	um	Description	
	malClassifier,GibbsAlgorith	m,NaïveBayes		
Classifier.				
	Module-4		K	
Weighted Regression, Radia	d Learning set ofrules: I l Basis Functions, Case-Base nms,LearningRuleSets,Learr		ing, Locally	L1, L2
Rules, Learning Sets of Firs	-			
	Module-5			
Analytical Learning Theories,ExplanationBased ReinforcementLearning.	and Reinforced Learning,Inductive-Analytic	Learning: Perfect calApproaches, FOCL	Domain Algorithm,	L1, L2
Course outcomes: At the end	of the course, students should	d be able to:		

- Build the fundamental concepts of Machine learning.
- Make use of the underlying mathematical relationships within and across Machine Learning algorithms.
- Identify the paradigms of supervised and un-supervised learning.
- Develop a real world problem and apply the learned techniques of Machine Learning to solve the problem.
- Inspect Perfect Domain Theories, Inductive-Analytical Approaches and Reinforcement Learning.

Question paper pattern:

- The question paper will have tenquestions.
- Each full question consists of 16marks.
- Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Machine Learning-Tom M. Mitchell, McGraw-Hill Education, (INDIAN EDITION), 2013.

Reference Books:

- 1. Introduction to Machine Learning- EthemAlpaydin, 2nd Ed., PHI Learning Pvt. Ltd., 2013.
- 2. The Elements of Statistical Learning- T. Hastie, R. Tibshirani, J. H. Friedman, Springer; 1st edition, 2001.

<u>NETWORK AND CYBER SECURITY</u> B.E., VIII Semester, Electronics & Communication Engineering [As per Choice Based credit System (CBCS) Scheme

Subject Code	15EC835	IA Marks	20		
Number of Lecture	03	Exam	80		
Hours/Week		marks			
Total Number of	40	Exam	03		
Lecture Hours	(8 Hours per Module)	Hours			
CREDITS – 03					
Course Objectives: This	course will enable students to:				
Knowaboutsec	urityconcernsinEmailandInterne	tProtocol.			
	per securityconcepts.				
•	ns that can arise in cybersecurity	V.			
-	ious cyber security framework.				
	5				
	Module-1			RBT Level	
	urity: Web Security Consider			L1, L2	
Transport Layer Secur	ity, HTTPS, Secure Shell (SSH) (Text 1: Chapter 15)		
	Module-2				
E-mail Security: Pretty	Good Privacy, S/MIME, Domain	kevs identified mail (Text 1·	L1, L2	
Chapter 17)		r keys identified mail (I OAT I.	7	
	Module-3				
IP Security: IP Secu	urity Overview, IP Security I	Policy, Encapsulation	n Security	L1, L2	
Payload (ESP), Co	mbining security Associatio			,	
Cryptographic Suites(Text				
1: Chapter 18)					
	Module-4				
Cyber network securit	ty concepts : Security Architect	ure, antipattern: signa	ature based	L1, L2, L3	
	ersus polymorphic threads, doc				
	lriven security certifications. Re	efactored solution: re	putational,		
behavioural and entroj	py based malware detection.				
The problems: cyber	antipatterns concept, forces in	o cyber antinatterns	cyber anti		
	er security antipattern catalog (T				
r i i r i i i i i i i i i i i i i i i i					
	Module-5				
Cyber network security				L1, L2, L3	
Enterprise security using				L_1, L_2, L_3	
	enterprisearchitecture, primitive	models			
	s,architecturalproblemsolvingpa		workshop,		
matrix mining, mini pa	tterns for problem solvingmeeting	ngs.	•		
Case study: cyber securi	ty hands on – managing administ	rations			

and root accounts, installing hardware, reimaging OS, installing system protection/ antimalware, configuring firewalls (Text-2: Chapter 3 & 4).

Course Outcomes: After studying this course, students will be able to:

- Explain network securityprotocols
- Understand the basic concepts of cybersecurity
- Discuss the cyber securityproblems
- Explain Enterprise SecurityFramework
- Applyconceptofcybersecurityframeworkincomputersystem administration

Question paper pattern:

- Thequestionpaperwillhave10fullquestionscarryingequalmarks.
- Eachfullquestionconsistsof16markswithamaximumofThreesub questions.
- Therewillbe2fullquestionsfromeachmodulecoveringallthetopicsof themodule
- Thestudents will have to answer 5 full questions, selecting one full question from each module.

Text Books :

- William Stallings, "Cryptography and Network Security Principles and Practice", Pearson Education Inc., 6thEdition, 2014, ISBN: 978-93-325-1877-3.
- 2. ThomasJ.Mowbray, "CyberSecurity–ManagingSystems, Conducting Testing, and Investigating Intrusions", Wiley.

Reference Books :

- 1. CryptographyandNetworkSecurity,BehrouzA.Forouzan,TMH,2007.
- 2. CryptographyandNetworkSecurity,AtulKahate,TMH,2003.