K.S. INSTITUTE OF TECHNOLOGY, BANGALORE (AFFLIATED TO VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELGAUM)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGG.

ENGINEERING MATHEMATICS-III

(Common to all Branches)

Course Title: Engineering Mathematics-III Credits:04 Contact Hours/Week: 04 Exam. Marks:80 Exam. Hours: 03 Course Code :15MAT31 L-T-P :4-0-0 Total Hours:50 IA Marks :20

Modules	RBT
	Level
Module-1	
Fourier Series: Periodic functions, Dirichlet's condition, Fourier Series of periodic functions with	L1, L2, L4
period 2π and with arbitrary period $2c$. Fourier series of even and odd functions. Half range Fourier	
Series, practical harmonic analysis-Illustrative examples from engineering field.	
Module-2	
Fourier Transforms: Infinite Fourier transforms, Fourier sine and cosine transforms. Inverse Fourier	L2, L3, L4
transform.	
Z-transform: Difference equations, basic definition, z-transform-definition, Standard z-transforms,	
Damping rule, Shifting rule, Initial value and final value theorems (without proof) and problems,	
Inverse z-transform. Applications of z-transforms to solve difference equations.	
Module-3	
Statistical Methods: Review of measures of central tendency and dispersion. Correlation-Karl	
Pearson's coefficient of correlation-problems. Regression analysis- lines of regression (without proof). Problems	
$p_{1001} = r_{1001}$ = r_{1001} = r_{10	
Curve Fitting. Curve fitting by the method of least squares- fitting of the curves of the form, $y = ax + b$, $y = ax^2 + bx + c$ and $y = acbx$	L3
Numerical Methods: Numerical solution of algebraic and transcendental equations by Regula- Falsi	
Method and Newton-Raphson method.	
1 	
Module-4	
Finite differences : Forward and backward differences, Newton's forward and backward	
interpolation formulae. Divided differences- Newton's divided difference formula. Lagrange's	
interpolation formula and inverse interpolation formula (all formulae withoutproof)-Problems.	L3
Numerical integration: Simpson's (1/3) th and (3/8) th rules, Weddle's rule (without proof)–Problems.	

Module-5	
Green's theorem in a plane, Stokes and Gauss-divergence theorem(without proof) and problems.	L3,L4
Calculus of Variations: Variation of function and Functional, variational	
problems. Euler's equation, Geodesics, hanging chain, Problems.	L2,L4
Course outcomes: On completion of this course, students are able to:	
 Make use of Fourier series to analyze wave forms of periodic functions 	
• Make use of Fourier transforms and Z - transforms to analyze wave forms of non periodic functions.	
• Identify statistical methods to find correlation and regression lines, also numerical methods to solve	
transcendental equations.	
• Utilize Numerical techniques for various finite difference technique problem.	
• Construct Greens, divergence and Stokes theorems for various engineering applications.	
Question paper pattern:	
• The question paper will have tenquestions	
 Fach full Question consisting of 16marks 	
 Therewillbe?fullouestions(withamaximumoffoursubquestions)fromeach module 	
 Fachfullquestion will have subquestion scovering all the topics under a module 	
 Thestudentswillhavetoanswer5fullquestions selecting one fullquestion from each module. 	
inestucents winnu verouns were runquestions, sere eurigenerunquestionn om eucliniouure.	
Text Books:	
1. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43 rd Ed.,2015.	
2. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10 th Ed., 2015.	
Reference Books:	
1. N.P.Bali and Manish Goyal: A Text Book of Engineering Mathematics, Laxmi Publishers, 7 th Ed., 2010.	
2. B.V.Ramana: "HigherEngineeringMathematics" TataMcGraw-Hill, 2006.	
3. H. K. Dass and Er. RajnishVerma: "Higher Engineering Mathematics", S.	. Chand
publishing, 1 st edition,2011.	
Web Link and Video Lectures:	
1. mip.//npiei.ac.m/courses.pnp?aiscipuneiD=111	
2. http://www.khanacaaemy.org/ 3 http://www.class-central.com/subject/math	
c. mp. , , , , , , , , , , , , , , , , , , ,	

(A	ADDITIONAL MATHEMATICS - I B.E., III Semester, Common to all Branche Bridge course for Lateral Entry students of III Se [As per Choice Based Credit System (CBCS) s	s em. B. E.) cheme]	
Subject Code	15MATDIP31	IA Marks	
Number of Lecture	03	Exam marks	80
Hours/Week			
Total Number of Lecture	40 (08 Hours per Module)		
Hours	C 1'4 - 00		
Course Objectives: This course	vill anable students to:		
 Acquire basic concept vectordifferentiation. Solve first order differ 	s of complex trigonometry, vector algebra, diffe	erential & integral calcul	lus and
	Modules		RBT
			Level
	Module-1		
Complex Trigonometry : Com complex number, Argand's dia Vector Algebra : Scalar and (Dot and Cross products). Scal	plex Numbers: Definitions & properties. Modu agram, De- Moivre's theorem (without proof). vectors. Vectors addition and subtraction. Mu lar and vectortriple products-simpleproblems.	lus and amplitude of a ltiplication of vectors	LI
	Module-2		
Differential Calculus : Review functions- Liebnitz's theorem (tangent pedal equation- Pro Differentiation : Euler's theor differentiation of composite and	r of successive differentiation. Formulae for n th (without proof). Polar curves–angle between the blems. Maclaurin's series expansions- Illustra em for homogeneous functions of two variab i implicit function. Application toJacobians.	derivatives of standard e radius vector and the tive examples. Partial les. Total derivatives-	L1, L2
	Module-3		
Integral Calculus: Statement of reduction formulae for $sin^n x$, $cos^n x$, and $sin^m x cos^n x$ and evaluation of these with standard limits-Examples. Double and triple integrals-Simpleexamples.		L1, L2	
	Module-4		
Vector Differentiation : Diff moving on a space curve. S Laplacian (Definitionsonly). Solenoidal and irrotational vec	erentiation of vector functions. Velocity and ac Scalar and vectorpoint functions. Gradient, l etor fields-Problems.	celeration of a particle Divergence, Curl and	L1, L2
	Module-5		
Ordinary differential equations (ODE's): Introduction-solutions offirst order and first degree differential equations: homogeneous, exact, linear differential equations of order one and equations reducible to above types.		L1, L2	

Course outcomes: On completion of the course, students are able to:	
• Understand the fundamental concepts of complex numbers and vector algebra to analyze the problems arising in relatedarea.	
• Use derivatives and partial derivatives to calculate rates of change of multivariate functions.	
• Learn techniques of integration including double and triple integrals to find area, volume, mass and moment of inertia of plane and solid region.	
• Analyze position, velocity and acceleration in two or three dimensions using the calculus of vector valuedfunctions.	
• Recognizeandsolvefirst-orderordinarydifferentialequationsoccurring in different branches of engineering.	
Question paper pattern:	
• The question paper will have tenquestions.	
• Each full Question consisting of 16marks	
• Therewillbe2fullquestions(withamaximumoffoursub questions) from eachmodule.	
• Eachfullquestionwillhavesubquestionscoveringallthetopics under amodule.	
• Thestudentswillhavetoanswer5fullquestions, selecting one full question from each module.	
Text Book :	
B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, New Delhi, 43 rd Ed., 2015.	
Reference Books:	
1. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10 th Ed., 2015.	
2. N.P.Bali and Manish Goyal: Engineering Mathematics, Laxmi Publishers, 7 th Ed.,2007.	

ANALOG ELECTRONICS [As per Choice Based Credit System (CBCS) scheme] SEMESTER – III(EC/TC)			
Subject Code	15EC32	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of	50 (10 Hours per Module)	Exam Hours	03
	CREDITS – 04		
 Course objectives: This co Explain various BJT Explain BJT Amplifi Explain construction Explainvarioustypeso Constructfrequencyro Analyze Power ampl Construct Feedback and and and and and and and and and and	purse will enable students to: parameters, connections and configurations. er, Hybrid Equivalent and HybridModels. and characteristics of JFETs andMOSFETs. ofFETbiasing, and demonstrate the use of FET amplifiers. esponse of BJT and FET amplifiers at various frequencies. ifier circuits in different modes of operation. and Oscillator circuits using FET.		
 	RBT Level		
Module -1			
BJT AC Analysis: BJT bias, Voltage divider bia Hybrid equivalent model Emitter follower configu	Transistor Modeling, The re transistor model, Commo s, Emitter follower configuration. Darlington connectio , Approximate Hybrid Equivalent Circuit- Fixed bias, Y ration; Complete Hybrid equivalent model, Hybrid π M	on emitter fixed n-DC bias; The Voltage divider, odel.	L1, L2,L3
Module -2			
Field Effect Transistors: Construction and Characteristics of JFETs, Transfer Characteristics, Depletion type MOSFET, Enhancement type MOSFET. FET Amplifiers: JFET small signal model, Fixed bias configuration, Self bias configuration, Voltage divider configuration, Common Gate configuration. Source-Follower Configuration, Cascade configuration.		L1, L2, L3	
Module -3			
BJT and JFET Frequen Amplifier with RL, Low frequency res FETAmplifier,Multistage Effects.	cy Response: Logarithms, Decibels, Low frequency frequency response- FET Amplifier, Miller effect ca ponse –BJT Amplifier,Highfreq Frequency	response – BJT pacitance, High uencyresponse-	L1, L2, L3
wodule -4			

Feedback and Oscillator Circuits: Feedback concepts, Feedback connection types, Practical feedback circuits, Oscillator operation, FET Phase shift oscillator, Wien bridge oscillator, Tuned Oscillator circuit, Crystal oscillator, UJT construction, UJT Oscillator.	L1,L2, L3
Module -5	
Power Amplifiers: Definition and amplifier types, Series fed class A amplifier, Transformer coupled class A amplifier, Class B amplifier operation and circuits, Amplifier distortion, Class C and Class D amplifiers. Voltage Regulators: Discrete transistor voltage regulation - Series and Shunt Voltage regulators.	L1, L2, L3
 Course Outcomes: After studying this course, students will be able to: Identify the working principle and characteristics of BJT, FET, Single stage, cascaded and feedbar amplifiers. Construct the Phase shift, Wien bridge, tuned and crystal Oscillators using BJT/FET/UJT. Solve for the AC gain and impedance for BJT using re and h Parameters models for CE and CC configuration. Identify the performance characteristics and parameters of BJT and FET amplifier using small sig model. Determine parameters which affect low frequency and high frequency responses of BJT and FET amplifiers. 	ck gnal
 Question paper pattern: The question paper will have tenquestions. Each full question consists of 16marks. Therewillbe2fullquestions(withamaximumofThreesubquestions)fromeach module. Eachfullquestion willhavesubquestionscoveringallthetopicsunderamodule. Thestudentswillhavetoanswer5fullquestions,selectingonefullquestionfrom eachmodule. 	
Text Book:	
Robert L. Boylestad and Louis Nashelsky, "Electronics devices and Circuit theory", Pearson, 10 th 2012, ISBN:978-81-317-6459-6.	¹ /11th Edition,
Reference Books:	
1. AdelS.SedraandKennethC.Smith, "MicroElectronicCircuitsTheoryand Application", 5th	
2. FundamentalsofMicroelectronics, BehzadRazavi, JohnWeilvISBN2013978-81- 265-2307-8	
 3. J.Millman&C.C.Halkias—Integrated Electronics, 2ndedition, 2010, TMH. ISBN 0- 07-462245-5 4. K.A.Navas, "ElectronicsLabManual", VolumeI, PHI, 5thEdition, 2015, ISBN:9788120351424. 	
Web Link and Video Lectures:	

1. https://www.classcentral.com/course/swayam-analog-circuits

2. https://swayam.gov.in/nd1_noc19_ee38/preview

[As per Choice Based Credit System (CBCS) scheme] SEMESTER – III (EC/TC) Subject Code 15EC33 IA Marks 20	
SEMESTER - III (EC/TC) Subject Code 15EC33 IA Marks 20	
Number of 04 Exam Marks 80	
Lecture Hours/Week	
Total Number of50 (10 Hours per Module)Exam Hours03	
Lecture Hours	
CREDITS – 04	
Course objectives: This course will enable students to:	
 InfustratesimplificationorAlgebraicequationsusingKarnaugnMapsandQuine- McCluskyTechniques. Design combinational logicaircuits 	
 Design Decoders Encoders DigitalMultiplever Adders Subtractors and Binary Comparators 	
 Describe Latches and Flip-flops. Registers and Counters 	
 Analyze Mealy and MooreModels. 	
 Develop state diagrams Synchronous SequentialCircuits. 	
Modules RBT	
Lever	
Module – 1	
Principles of combination logic : Definition of combinational logic canonical forms Generation I 1 L 2 L	3
of switching equations from truth tables, Karnaugh maps-3,4,5 variables, Incompletely specified	10
functions (Don't care terms) Simplifying Max term equations, Quine-McCluskey minimization	
technique, Quine-McCluskey using don't care terms, Reduced prime implicants Tables.(Text 1,	
Chapter 3)	
Module -2	
Analysis and design of combinational logic: General approach to combinational logic design, L1, L2, I Decoders BCD decoders Encoders digital	-3
multiplexers. UsingmultiplexersasBoolean function generators. Adders and subtractors. Cascading	
full adders, Look ahead carry, Binary comparators.(Text 1, Chapter4)	
Module -3	
Flip-Flops:BasicBistableelements,Latches,Timingconsiderations,The master-slave flip-flops L1,L2	
(pulse-triggered flip-flops): SR flip-flops,JK flip- flops,Edgetriggeredflip-	
flops, Characteristic equations. (Text2, Chapter 6)	
Module -4	
Module -4 Simple Flin-Flons Applications: Registers binary ripple counters synchronous binary counters 1112 13	
Module -4 Simple Flip-Flops Applications: Registers, binary ripple counters, synchronous binary counters, L1,L2, L3 Counters based on shift registers, Design of a synchronous counters, Design of a synchronous	
Module -4 Simple Flip-Flops Applications: Registers, binary ripple counters, synchronous binary counters, Counters based on shift registers, Design of a synchronous counters, Design of a synchronous mod-n counter usingclockedT, JK, DandSRflip-flops. (Text2, Chapter6) L1,L2, L3	

Module -5	
Sequential Circuit Design: Mealy and Moore models, State machine notation, Synchronous Sequential circuit analysis, Construction of state diagrams, counterdesign. (Text 1, Chapter6)	L1, L2, L3

Course Outcomes: After studying this course, students will be able to:

- Apply Boolean algebra and Karnaugh Map to analyze combinational digital circuits.
- Apply Quine Mc-Cluskey technique for minimization of Boolean expression to get minimal SOP and POS Forms.
- Analyze and design combinational digital electronic circuits to meet the given Specifications/Constraints.
- Model Sequential circuit by understanding the working of basic components used in Sequential circuits.
- Analyze and develop state diagram, state table, state equation for Mealy and Moore Finite state machine.

Question paper pattern:

- The question paper will have tenquestions.
- Each full question consists of 16marks.
- Therewillbe2fullquestions(withamaximumofThreesubquestions)fromeach module.
- Eachfullquestionwillhavesubquestionscoveringallthetopicsunderamodule. Thestudentswillhavetoanswer5fullquestions,selectingonefullquestionfrom eachmodule.

Text Books:

- 1. DigitalLogicApplicationsandDesign,JohnMYarbrough,ThomsonLearning, 2001. ISBN 981-240-062-1.
- 2. DonaldD.Givone, "DigitalPrinciplesandDesign", McGrawHill, 2002.ISBN 978-0-07-052906-9.

Reference Books:

- 1. D.P.KothariandJ.SDhillon, "DigitalCircuitsandDesign", Pearson, 2016, ISBN: 9789332543539.
- 2. MorrisMano, "DigitalDesign", PrenticeHallofIndia, ThirdEdition.
- 3. CharlesHRoth, Jr., "Fundamentalsoflogicdesign", CengageLearning.
- 4. K.A.Navas, "ElectronicsLabManual", VolumeI, PHI, 5thEdition, 2015, ISBN: 9788120351424.

Web Link and Video Lectures:

1. https://swayam.gov.in/nd1_noc19_ee51/preview.

2. https://www.edx.org/learn/electronics

	NETWORK ANA [As per Choice Based Credit Sy SEMESTER – III	ALYSIS stem (CBCS) scheme] (EC/TC)	
Subject Code	15EC34	IA Marks	20
Number	04	Exam Marks	80
Total Number of Lecture Hours	50 (10 Hours per Module)	Exam Hours	03
	CREDITS –	04	

Course objectives: This course enables students to:

- Describe basic network concepts emphasizing source transformation, source shifting, mesh and nodal techniques to solve for resistance/impedance, voltage, current and power.
- Explain network Thevenin's, Millman's, Superposition, Reciprocity, Maximum Power transfer and Norton's Theorems and apply them in solving the problems related to ElectricalCircuits.
- $\bullet \quad Explain the behavior of networks subjected to transient conditions.$
- Use applications of Laplace transforms to networkproblems.
- Describe Series and Parallel Combination of Passive Components as resonating circuits, related parameters and to analyze frequencyresponse.
- StudytwoportnetworkparameterslikeZ,Y,Tandhandtheirinter-relationships and applications.

	RBT
Modules	Level
	Lever
Module -1	
Basic Concepts: Practical sources, Source transformations, Network reductionusingStar-	
Deltatransformation, Loopandnodeanalysis with linearly dependent and independent sources for	L1,
DC and AC networks, Concepts of super node and supermesh.	L2,L3,L4
Module -2	
Network Theorems:	L1, L2, L3,L4
Superposition, Reciprocity, Millman's theorems, Thevinin's and Norton's theorems, Maximum	
Power transfertheorem.	
Module -3	
Transient behavior and initial conditions: Behavior of circuitelements	L1, L2, L3, L4
underswitchingconditionandtheirRepresentation, evaluation of initial and final conditions in RL,	
RC and RLC circuits for AC and DC excitations.	
Laplace Transformation & Applications : Solution of networks, step, ramp and impulse	
responses, waveform Synthesis.	
Module -4	
Resonant Circuits: Series and parallel resonance, frequency- response of series and Parallel	L1, L2,
circuits, Q-Factor, Bandwidth.	L3,L4
Module -5	

Two port network parameters: Definition of Z, Y, h and Transmission parameters, modeling with	L1, L2, L3,L4
these parameters, relationship between parameters sets.	

Course Outcomes: After studying this course, students will be able to:

- Make use of different transformation techniques and Mesh & Nodal nodal analysis to analyse DC and AC • electrical circuits.
- Solve for current/voltage in electrical circuits by applying network theorems. •
- Make use of Laplace transform to calculate current and voltages for the given circuit under transient conditions. •
- Solve for different parameters in resonant circuits. •
- Solve the given network using specified two port network parameters.

Question paper pattern:

,

- The question paper will have tenguestions. ٠
- Each full question consists of 16marks.
- Therewillbe2fullquestions(withamaximumofThreesubquestions)fromeach module.
- Each full question will have subquestions covering all the topics under a module.•
- Thestudentswillhavetoanswer5fullquestions, selecting one fullquestion from each module. •

Text Books:

- 1. M.E. Van Valkenberg (2000), "Network analysis", Prentice Hall of India, 3rdedition, 2000, ISBN:9780136110958.
- 2. Roy Choudhury, "Networks and systems", 2nd edition, New Age International Publications, 2006, ISBN:9788122427677.

Reference Books:

- 1. Hayt, Kemmerly and Durbin "Engineering Circuit Analysis", TMH 7thEdition, 2010.
- 2. J. David Irwin /R. Mark Nelms, "Basic Engineering Circuit Analysis", John Wiley, 8thed,2006.
- 3. Charles K Alexander and Mathew N O Sadiku, "Fundamentals of Electric Circuits", Tata McGraw-Hill, 3rdEd,2009.

Web Link and Video Lectures:

1. https://www.udemy.com/course/full-course-circuit-analysis/

2. https://www.khanacademy.org/science/electrical-engineering

ELECTRONIC INST	RUMENTATION		
[As per Choice Based Credi	t System (CBCS) scheme]		
SEMESTER –	III (EC/TC)		
15EC35	IA Marks	20	
04	Exam Marks	80	
50 (10 Hours per Module)	Exam Hours	03	
CREDIT	S - 04		
ationofAmmeters,Voltmeters,Mul oltmeters. nalconceptsandoperationofVarious nceptsandoperationofDigitalVoltr ussfunctioningandtypesofOscillos ges. nd describe significance	Itimetersanddevelop circuits AnalogandDigital measurin netersandMicroprocessor ba scopes,Signalgenerators, and working of	for multiran ginstruments sedinstrumen different	ge s. nts. types of
Modules			RBT Level
Definitions, Accuracy, Precision ement error combinations, Basics ter, Multirange Ammeter, The t, Extending of Ammeter Ran puple. (Text 1) eters: Introduction, Basic Meter Extending Voltmeter Ranges, Loa fferential Voltmeter, True RMS V ultimeter. (Text 1)	n, Resolution and Significa of Statistical Analysis. (Tex Ayrton Shunt or Univer ages, RF Ammeter (Ther as a DC Voltmeter, DC ading, AC Voltmeter using Voltmeter, Considerations in	nt Figures, ct 2) rsal Shunt, mocouple), Voltmeter, Rectifiers. n Choosing	L1, L2, L3
	ELECTRONIC INST [As per Choice Based Credi SEMESTER – 15EC35 04 50 (10 Hours per Module) 50 (10 Hours per Module) CREDIT ourse will enable students to: beaccuracyandprecision,typesofer ationofAmmeters,Voltmeters,Mut oltmeters. alconceptsandoperationofVarious neeptsandoperationofDigitalVoltr ussfunctioningandtypesofOscillos ges. nd describe significance Modules E Definitions, Accuracy, Precisio ement error combinations, Basics ter, Multirange Ammeter, The t, Extending of Ammeter Rar puple. (Text 1) eters: Introduction, Basic Meter Extending Voltmeter Ranges, Los fferential Voltmeter, True RMS Y ultimeter. (Text 1)	ELECTRONIC INSTRUMENTATION [As per Choice Based Credit System (CBCS) scheme] SEMESTER – III (EC/TC) 15EC35 IA Marks 04 Exam Marks 50 (10 Hours per Module) Exam Hours CREDITS – 04 Durse will enable students to: beaccuracyandprecision,typesoferrors,statisticaland probabilitationofAmmeters, Voltmeters,Multimetersanddevelop circuits oltmeters. adiconceptsandoperationofvariousAnalogandDigital measurin neceptsandoperationofDigitalVoltmetersandMicroprocessor ba ussfunctioningandtypesofOscilloscopes,Signalgenerators, ges. nd describe significance and working of Modules Modules Left, Multirange Ammeter, The Ayrton Shunt or Univer ter, Multirange Ammeter, The Ayrton Shunt or Univer t, Extending of Ammeter Ranges, RF Ammeter (Ther uple. (Text 1) eters: Introduction, Basic Meter as a DC Voltmeter, DC Extending Voltmeter, True RMS Voltmeter, Considerations i ultimeter. (Text 1)	ELECTRONIC INSTRUMENTATION [As per Choice Based Credit System (CBCS) scheme] SEMESTER – III (EC/TC) 15EC35 IA Marks 20 04 Exam Marks 80 50 (10 Hours per Module) Exam Hours 03 CREDITS – 04 Durse will enable students to: beaccuracyandprecision,typesoferrors,statisticaland probability analysis. ationofAmmeters, Voltmeters,Multimetersanddevelop circuits for multiran oltmeters. alconceptsandoperationofvariousAnalogandDigital measuringinstruments aceptsandoperationofVariousAnalogandDigital measuringinstruments aceptsandoperationofDigitalVoltmetersandMicroprocessor basedinstrumer Modules Modules Modules Modules Modules Definitions, Accuracy, Precision, Resolution and Significant Figures, ement error combinations, Basics of Statistical Analysis. (Text 2) ter, Multirange Ammeter, The Ayrton Shunt or Universal Shunt, t, Extending of Ammeter Ranges, RF Ammeter (Thermocouple), uple. (Text 1) eters: Introduction, Basic Meter as a DC Voltmeter, DC Voltmeter, Xatending Voltmeter, Ranges, Loading, AC Voltmeter, DC Voltmeter, Strending Voltmeter, True RMS Voltmeter, Considerations in Choosing altimeter. (Text 1)

DigitalVoltmeters: Introduction, RAMP technique, Dual Slope Integrating Type DVM, Integrating Type DVM, Most Commonly used principles of ADC, Successive Approximations, Continuous Balance DVM, ³ ¹ / ₂ -Digit, Resolution and Sensitivity of Digital Meters, General SpecificationsofDVM,MicroprocessorbasedRamptypeDVM.(Text1) Digital Instruments: Introduction, Digital Multimeters, Digital FrequencyMeter,DigitalMeasurementofTime,UniversalCounter, Digital Tachometer, Digital pH Meter, Digital Phase Meter, Digital CapacitanceMeter,MicroprocessorbasedInstruments.(Text1)	L1, L2,L3
Module -3	
Oscilloscopes: Introduction, Basic principles, CRT features, Block diagram of Oscilloscope, Simple CRO, Vertical Amplifier, Horizontal Deflecting System, Sweep or Time Base Generator, StorageOscilloscope, Digital Readout Oscilloscope, Measurement of Frequency by Lissajous Method, Digital Storage Oscilloscope. (Text1) Signal Generators: Introduction, Fixed and Variable AF Oscillator, StandardSignalGenerator,LaboratoryTypeSignalGenerator,AFsine and Square Wave Generator, Function Generator, Square and Pulse Generator, Sweep Generator. (Text1)	L1, L2
Module -4	
Measuring Instruments: Output Power Meters, Field Strength Meter, Stroboscope, Phase Meter, Vector Impedance Meter, Q Meter, Megger, Analog pH Meter. (Text 1) Bridges:Introduction,Wheatstone'sbridge,Kelvin'sBridge;ACbridges, Capacitance Comparison Bridge, Inductance Comparison Bridge, Maxwell'sbridge,Wien'sbridge,Wagner'searthconnection.(Text 1)	L1, L2,L3
Module -5	
Iransducers: Introduction, Electrical transducers, Selecting a transducer, Resistive transducer, Resistive position transducer, Strain gauges, Resistance thermometer, Thermistor, Inductive transducer, Differential output transducers, LVDT, Piezoelectric transducer, Photoelectrictransducer,Photovoltaictransducer,Semiconductorphoto diode and transistor, Temperature transducers-RTD. (Text1)	L1, L2, L3
 CourseOutcomes: Afterstudyingthiscourse, students will be ableto: Solve problems related to accuracy and precision. Identify the functioning of various types of analog and digital measuring instruments. Identify different types of quantization, resolution and sensitivity in digital instruments, and micri instrumentation. Examine the functioning of various types of oscilloscopes and signal generators. Analyse different types of transducers in various applications. 	roprocessor based

Question paper pattern:

- The question paper will have tenquestions.
- Each full question consists of 16marks.
- Therewillbe2fullquestions(withamaximumofThreesubquestions)fromeach module.
- $\bullet \quad Each full question will have subquestions covering all the topic sunder a module.$
- Thestudents will have to answer 5 full questions, selecting one full question from each module.

TextBooks:

1. H.S. Kalsi, "ElectronicInstrumentation",McGraw

Hill,3rdEdition,2012,ISBN:9780070702066.

 David A. Bell, "Electronic Instrumentation & Measurements", Oxford University Press PHI 2ndEdition, 2006, ISBN 81-203-2360-2.

Reference Books:

- A. D. Helfrick and W.D. Cooper, "Modern Electronic Instrumentation and Measuring Techniques", Pearson, 1stEdition,2015,ISBN:9789332556065.
- 2. A.K.Sawhney, "ElectronicsandElectricalMeasurements", DhanpatRai&Sons. ISBN -81-7700-016-0

Web Link and Video Lectures:

1. https://swayam.gov.in/nd1_noc19_ee44/preview

2. https://ekeeda.com/subject/electronic-instrumentation-and-measurement

ENG [As per Cho	NEERING ELECTROMAGNETIC	<u>CS</u> scheme]	
	SEMESTER – III (EC/TC)		
Subject Code	15EC36	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50 (10 Hours per Module)	Exam Hours	03
	CREDITS - 04		
 Course objectives: This course will enable st Study the different coordinate syster UnderstandtheapplicationsofCoulom applications of Laplac realtimeproblemsoncapacitanceofdif Understandthephysicalsignificanceo currentdistributions. Infer the effects of magnetic forces, KnowthephysicalinterpretationofMa differentmedia AcquireknowledgeofPoyntingtheore Modules Module - 1 Coulomb's Law, Electric Field Intensity an Electric field intensity, Field due to continic charge. Electric flux density.	nudents to: ns, Physical signifiance of Diverg nb'slawandGausslawtodifferentch e's and Poisson's fferentchargedistributions. fBiot-Savart's, Amperes's Lawand materials and inductance. xwell'equations and applications for mandits application of powerflow.	gence, Curl andGradient. arge distributions Equations to Stokes' theorem for orPlane waves for their l RBT of Coulomb, ield of a line L1, L2	and the solve r different behaviour in
Module -2			
Gauss's law and Divergence Gauss'law,Divergence.Maxwell'sFirster and divergencetheorem. Energy, Potential and Conductors Energyexpendedinmovingapointchargein potential difference and potential, The po Current density, Continuity ofcurrent.	juation(Electrostatics), Vector Op nanelectricfield, The line integral, 5 otential field of point charge, Curr	Erator ▼ L1, L2 Definition of rent and	2, L3
Module -3			
Poisson's and Laplace's Equations DerivationofPoisson'sandLaplace'sEqua of the solution of Laplace's equation. Sto Biot-Savart Law, Ampere's circuital law Magneticfluxandmagneticfluxdensity,Sc	ations,Uniqueness theorem, Exampleady MagneticField v, Curl, Stokes' theorem, alarandVectorMagnetic Potentials	ples s.	2, L3
Module -4			

Magnetic Forces Forceonamovingcharge, differential current elements, Force between differential current elements.	L1, L2, L3
Magnetic Materials Magnetisation and permeability, Magnetic boundary conditions, Magneticcircuit,PotentialEnergyandforcesonmagneticmaterials.	
Module -5	
Time-varying fields and Maxwell'sequations Farday's law, displacement current, Maxwell's equations in point form, Maxwell's equations in integral form.	L1, L2, L3
Uniform Plane Wave Wave propagation in free space and good conductors. Poynting's theorem and wave power, Skin Effect.	
 Course Outcomes: After studying this course, students will be able to: Interpret the problems on electric field due to point, linear, volume charges by applying co by Gauss law. 	nventional methods or
 Solve for magnetic field, force, and potential energy of magnetic materials. Apply Maxwell's equation for time varying fields, EM waves in free space and conductors Make use of Poyntingtheorem to find power associated with EM waves. 	S.
 Question paper pattern: The question paper will have tenquestions. Each full question consisting of 16marks. Therewillbe2fullquestions(withamaximumofThreesubquestions)fromeach module. Eachfullquestion willhavesubquestionscoveringallthetopicsunderamodule. Thestudentswillhavetoanswer5fullquestions,selectingonefullquestionfrom eachmodule. 	
Text Book : W.H.HaytandJ.A.Buck,"EngineeringElectromagnetics",7thEdition,Tata McGraw-Hill, 978-0-07-061223-5.	2009,ISBN-
ReferenceBooks: 1. JohnKraussandDanielAFleisch, "Electromagneticswithapplications", McGraw- Hill. 2. N.NarayanaRao, "FundamentalsofElectromagneticsforEngineering", Pearson.	
Web Link and Video Lectures:	

1. https://www.coursera.org/lecture/electrodynamics-introduction/1-1-introduction-to-electromagnetism-qiIQb

2. https://www.classcentral.com/course/swayam-electromagnetic-theory

	ANALOG ELI	ECTRONICS LABORATORY			
	[As per Choice Bas	ed Credit System (CBCS) scheme]			
	SEMI	ESTER – III (EC/TC)			
LaboratoryCode	15ECL37		IA	20	
			Marks		
Number of Lecture	01Hr Tutorial (Instructio	ns)	Exam Marks	80	
Hours/Week	+ 02 Hours Laboratory				
RBT Level	L1, L2, L3		Exam Hours	03	
		CREDITS – 02	-		
Course objectives: Th	s laboratory course enables	students to get practical experience	in design, assembly,	testing	
and evaluationof:					
• Rectifiers and V	oltageRegulators.				
• BJT characteris	tics and Amplifiers.				
JFET Character	istics and Amplifiers.				
MOSFET Char	acteristics and Amplifiers				
Power Amplifie	rs.				
• RC-Phase shift.	Hartley. Colpitts and Crys	stalOscillators.			
NOTE: The experime	its are to be carried using o	discrete components only.			
Laboratory Experimen	s:				
1. Designandsetupthe	followingrectifierswithand	without filters and to determine ripple	e factor and		
(-) F-11W Dest	*				
(a) Full waveRecti	ter (b) Bridge	eRectifier			
2.Conductexperiment	otestdiodeclipping(single/o	doubleended)andclamping circuits(positive/negative).		
2 Conducton ov porimo	nton Sorios Volta go Dogulato	orusing Zonordio doon drower transis	tor to datarmina li	a and	
load regulation char	acteristics				
	actoristics.				
4.RealizeBJTDarlingt	onEmitterfollowerwithand	withoutbootstrappingand determine	the gain, input and	1	
outputimpedances.					
5 DesignandsetuntheF	Tcommonemitteramplifie	rusingvoltagedividerbiaswith and	without feedback a	nd	
determine the gain	- bandwidth product from i	ts frequencyresponse.		liu	
0	r	1			
6.Plotthetransferanddi	aincharacteristicsofaJFETa	andcalculateitsdrain resistance, mut	ual conductance an	ıd	
amplificationfactor	amplification factor.				
7 Design setupendales	thafraquanauraananaaafCa	mmonSourceIEET/MOSEET ame	ifiar and obtain		
thebandwidth	menequencyresponseorCo	mmonsourcere 1/mosre1 ampl			
incound within.					

8. Plot the transfer and drain characteristics of n-channel MOSFET and calculate its parameters, namely; drain resistance, mutual conductance and amplification factor.

9.Set-upandstudytheworkingofcomplementarysymmetryclassBpushpullpower amplifier and calculate the efficiency.

10. Designandset-uptheRC-PhaseshiftOscillatorusingFET, and calculate the frequency of output waveform.

11.Designandset-upthefollowingtunedoscillatorcircuitsusingBJT,anddetermine the frequency ofoscillation.(a) Hartley Oscillator (b) Colpitts Oscillator

12. Designandset-upthecrystaloscillatoranddeterminethefrequencyofoscillation.

Course Outcomes: On the completion of this laboratory course, the students will be able to:

- Construct the circuits to identify the working of rectifiers, clipping circuits, clamping circuits and voltage regulators.
- Identify the characteristics of BJT and FET amplifiers and plot its frequency response.
- Identify the performance parameters of amplifiers and voltage regulators.
- Construct the BJT Power amplifier to calculate its efficiency
- Examine the performance characteristics of oscillators.

Conduct of Practical Examination:

- Alllaboratory experiments are to be included for practical examination.
- Students are allowed to pick one experiment from thelot.
- Strictlyfollowtheinstructionsasprintedonthecoverpageofanswerscriptfor breakup ofmarks.
- ChangeofexperimentisallowedonlyonceandMarksallottedtotheprocedure part to be madezero.

DIGITAL ELECTRONICS LABORATORY				
	SEMESTER – III (EC/TC)			
Laboratory Code	15ECL38	IA Marks	20	
Number of Lecture Hours/Week	01Hr Tutorial (Instructions) + 02 Hours Laboratory	Exam Mark	80	
RBT Level	L1, L2, L3	Exam Hour	03	
	CREDITS – 02			
Course objectives: experience in design, realisation • Demorgan's Theorem • Full/Parallel Adders, • Multiplexer using log • Demultiplexers and C • Flip-Flops, Shift regionality	This laboratory course enables students to on and verification of m, SOP, POS forms Subtractors and MagnitudeComparator gicgates Decoders isters andCounters	get p	ractical	
NOTE:				
 Usediscretecomponen equivalent IC can beu ForexperimentNo.11a 	tstotestandverifythelogicgates.TheICumbers given are sugges sed. nd12anyopensourceorlicensedsimulationtool may beused.	stive. Any		
Laboratory Experiments:				
 Verify (a) Demorgan's Theorem (b) Thesum-ofproductangates. 	n for 2variables. adproduct-of-sumexpressionsusinguniversal			
2. Design and implement(a) Full Adder using bas(b) Full subtractor using	ic logicgates. basic logicgates.			
3. Design and implement 4-b	it Parallel Adder/ subtractor using IC 7483.			
4. Design and Implementatio	n of 4-bit Magnitude Comparator using IC 7485.			
 5. Realize (a) 4:1 Multiplexer using (b) 3-variable function using 	ggates. sing IC74151(8:1MUX).			
6. Realize 1:8 Demux and 3:8	Decoder using IC74138.			
7. Realize the following flip (a) ClockedSRFlip-Flop	o-flops using NANDGates. (b) JKFlip-Flop.			
8. Realize the following shit (a) SISO (b) SIPO (c) Pl	ft registers usingIC7474 ISO (d)PIPO.			
9. Realize the Ring Counter a	and Johnson Counter using IC7476.			
10. Realize the Mod-N Coun	ter using IC7490.			

11. Simulate Full- Adder using simulation tool.

12. Simulate Mod-8 Synchronous UP/DOWN Counter using simulation tool.

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Identify the truth table of various expressions and combinational circuits using logic gates.
- Design and test various combinational circuits such as adders, subtractors, comparators, multiplexers.
- Develop Boolean expressions using decoders.
- Construct flips-flops, counters and shift registers
- Construct full adder and up/down counters

Conduct of Practical Examination:

- Alllaboratory experiments are to be included for practical
- Studentsareallowedtopickoneexperimentfromthelot.
- Strictlyfollowtheinstructionsasprintedonthecoverpageofanswerscriptfor breakup ofmarks.

examination.

• Changeofexperimentisallowedonlyonceand15%Marksallottedtothe procedure part to be madezero.

B.E E&C FIFTH SEMESTER SYLLABUS

MANAGEMENT AND ENTREPRENEURSHIP DEVELOPMENT

B.E., V Semester, EC/TC/EI/BM/ML [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15ES51	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50 (10 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CREDI	TS – 04		
Course Objectives: This co	ourse will enable students to:			
• Understand basic s	kills of Management			
• Understand the nee	ed for Entrepreneurs and theirski	lls		
Understand Project	t identification andSelection			
• Identify the Manag	ement functions and Socialrespo	onsibilities		
• Distinguish betwee	en management andadministratio	n		
	Module-1			RBT
	Niodale 1			Level
Management: Natureand	FunctionsofManagement–Import	ance, Definition,		11.10
ManagementFunctions,Le	evelsofManagement,RolesofMar	nager,Managerial	Skills, Management &	L1, L2
Administration, Managen	nent as a Science, Art& Professi	on (Selected topics	of Chapter 1, Text1).	
Planning: Planning-Natur	re, Importance, Types, Steps an	d Limitations of P	lanning; Decision Making –	
Meaning, Types and Step	s in Decision Making(Selected t	opics from Chapter	s 4 & 5, Text 1).	
	Module-2	1		
Organizing and Staffing	Organization -Meaning Chara	cteristics Process	of Organizing Principles of	
Organizing, Span of Ma	nagement (meaning and import	tance only), Depart	mentalisation, Committees-	L1, L2
Meaning, Types of Com	mittees; Centralization Vs Dec	centralization of A	uthority and Responsibility;	
Staffing-Need and Impor	tance, Recruitment and Selection	n Process (Selected	topics from Chapters 7, 8 &	
11,Text 1).				
Directing and Control	ling:Meaning and Requiremer	nts of Effective I	Direction, Giving Orders;	
Motivation-Nature of M	Iotivation, Motivation Theorie	es (Maslow's Nee	ed-Hierarchy Theory and	
Herzberg's Two Factor	r Theory); Communication -	- Meaning, Impo	rtance and Purposes of	
Communication; Leade	rship-Meaning, Characteristics	s, Behavioural A	pproach of Leadership;	
System Benefits of Cont	ypes, reconfigues of Coordination rol. Essentials of Effective Contra	on; Controlling – r	Control Process	
(Selected topics from Ch	anters 15 to 18 and 9 Text1)	or System, Steps in	control ribeess	
(beleeted topies from end				
Module-3				
Social Responsibilities of l	Business: Meaning of Social Resp	onsibility. Social Re	sponsibilities of Business	
towards Different Groups,	Social Audit, Business		r	L1, L2
Ethics and Corporate Governance (Selected topics from Chapter 3, Text 1).				

Entrepreneurship : Definition of Entrepreneur, Importance of Entrepreneurship,conceptsofEntrepreneurship,Characteristicsofsuccessful Entrepreneur, Classification of Entrepreneurs, Myths of Entrepreneurship, Entrepreneurial Development models, Entrepreneurial development cycle, Problems faced by Entrepreneurs and capacity building forEntrepreneurship (Selected topics from Chapter 2, Text 2).	
Module-4	
Modern Small Business Enterprises: Role of Small Scale Industries, Impact of Globalization and WTO on SSIs, Concepts and definitions of SSI Enterprises, Government policy and development of the Small Scale sector in India,GrowthandPerformanceofSmallScaleIndustriesinIndia,Sicknessin SSI sector, Problems for Small Scale Industries, Ancillary Industry and Tiny Industry(Definitiononly)(SelectedtopicsfromChapter1,Text2).	L1, L2
Institutional Support for Business Enterprises: Introduction, Policies & Schemes of Central Level Institutions, State Level Institutions (Selected topics from Chapter 4, Text 2).	
Module-5	
Projects Management :AProject. Search for a Business idea: Introduction, Choosing an Idea, Selection of product, The Adoption process, Product Innovation, Product Planning and Development Strategy, Product Planning and Development Process. Concepts of Projects and Classification: Introduction, Meaning of Projects, Characteristics of a Project, Project Levels, Project Classification, Aspects of a Project, The project Cycle, Features and Phases of Project management, Project Management Processes. Project Identification: Feasibility Report, Project Feasibility Analysis. Project Formulation: Meaning, Steps in Project formulation, Sequential Stages of Project Formulation, Project Evaluation.	L1, L2, L3
Project Design and Network Analysis: Introduction, Importance of Network Analysis, Origin of PERT and CPM, Network, Network Techniques, Need for Network Techniques, Steps in PERT, CPM, Advantages, Limitations and Differences.	
(Selected topics from Chapters 16 to 20 of Unit 3, Text 3).	
Course Outcomes: After studying this course, students will be able to:	
• Identify the different fundamental concepts of Management and Entrepreneurship.	
• Select the best Entrepreneurship model for the required domain of establishment.	
 Explain the functions of Managers, Entrepreneurs and their social responsibilities. Survey the Institutional support by various state and control government, econoics 	
 Survey the Institutional support by various state and central government agencies Apply the knowledge of Project Formulation and Evaluation Techniques 	
• Appry the knowledge of Project Pornulation and Evaluation Techniques.	
Question paper pattern	
• The question paper will have TENquestions.	
 Each full question carries 16marks. There will be two full questions (with a maximum of There are hand) from a scheme day. 	
 Fachfullquestion willbayes ubquestion scovering all tonics under a module. 	
 Each unquestion with avesuoquestion scovering antopic sunder antoquie. The students will have to answer 5 full questions, selecting one full question from each module. 	

Text Books:

- 1. Principles of Management P.C Tripathi, P.N Reddy, McGraw Hill Education, 6thEdition, 2017.ISBN-13:978-93-5260-535-4.
- 2. Entrepreneurship Development Small Business Enterprises- Poornima M Charantimath, Pearson Education 2008, ISBN 978-81-7758-260-4.
- 3. Dynamics of Entrepreneurial Development and Management by Vasant Desai. HPH 2007, ISBN:978-81-8488-801-2.

Reference Book:

 Essentials
 of
 Management:
 An
 International,
 Innovation
 and
 Leadership

 perspective by Harold Koontz, Heinz Weihrich McGraw Hill Education, 10th

 Edition 2016. ISBN- 978-93-392-2286-4.

 Web Link and Video Lectures:

1. https://www.edx.org/learn/entrepreneurship

2. https://www.startupindia.gov.in/content/sih/en/reources/l-d-listing.html

DIGITAL SIGNAL PROCESSING B.E., V Semester, Electronics & Communication Engineering / Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

		can bystem (CDCD)	benefici	
Subject Code	15EC52	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50 (10 Hours / Module)	Exam Hours	03	
LectureHours				
	CRED	DITS - 04		
Course objectives: This course	rse will enable students to			
• Understandthefrequ	encydomainsamplingandrecons	structionofdiscretetir	ne signals.	
 Studythepropertiesa 	ndthedevelopmentofefficiental	gorithmsforthecomp	utation of DFT.	
• Realization of FIR a	and IIR filters in different struct	uralforms.		
• Learntheprocedures bilineartransformati	todesignofIIR filters from the analon.	logfiltersusingimpul	se invariance and	
 Studythedifferentwi 	ndowsusedinthedesignofFIRfilt	tersanddesignappron	riate filters based on	
thespecifications.		er same ee signappi op		
L.				
		1.1		
	Mo	odules		DDT
	Module-	1		KB I Laval
Discrete Fourier Transfor	ms (DFT): Frequency domair	sampling and reco	onstruction of discrete time	
signals DFT as a linear	transformation its relationsh	in with other trans	sforms Properties of DFT	L1, L2
multiplication of two	transformation, its relationsh	inp with other train.	sounds tropences of D11,	
DETs the circular convolu	ition			
DI IS- the circular convolt				
	Module-2	2		
Additional DFT propertie	s, use of DFT in linear filterin	ng, overlap-save and	l overlap-add method. Fast-	L1, L2,
Fourier-Transform (FFT)	algorithms: Direct computation	n of DFT, need for	efficient computation of the	L3
DFT (FFT algorithms).				
	Module-3	3		
Radix-2FFTalgorithmforth	iecomputationofDFTandIDFT-	decimation-in-time	and decimation-in-frequency	Ll,
algorithms. Goertzel algor	ithm, and chirp-z transform.			
				2, L3
				_
	Module-4	4		
Structure for IIR Systems:	Direct form, Cascade form, Par	rallel form structure	s. IIR filter design:	L1,
characteristics of common	ily used analog filter – Butterw	orth and Chebyshev	filters, analog to analog	
Design of IIR Filters from	analog filter using Butterworth	filter. Impulse inve	riance Bilinear	2, L3
transformation	analog inter using Dutter worth	miter. mipuise mva	mance, Diffical	
a and for man on.				
		-		<u> </u>
a a === =	Module-	5		
StructureforFIRSystems:D	virectform.LinearPhase.Frequen	cysampling		L1,L2,

structure. Lattice structure	12
SIFUCIURE, Lattice Structure. FIR filter design: Introduction to FIR filters, design of FIR filters using Rectangular Hamming	L3
Hanning and Bartlett windows	
Training and Darrett windows.	
Course Outcomes: After studying this course, students will be able to:	
• Construct the frequency domain sampling and reconstruction of discrete time signals.	
• Make use of the properties and develop efficient algorithms for the computation of DFT.	
• Construct FIR and IIR filters in different structural forms.	
• Utilize the procedures to design IIR filters from the analog filters using impulse invariance and bi transformation.	linear
 Identify the different windows used in the design of FIR filters and design appropriate filters base specifications. 	ed on the
Question paper pattern:	
• The question paper will have tenquestions	
• Each full question consists of 16marks.	
• Therewillbe2fullquestions(withamaximumofthreesubquestions)fromeach module.	
• Eachfullquestion will have subquestions covering all the topics under a module	
• The students will have to answer 5 full questions, selecting one full question from eachmodule.	
Text Book:	tion 4thEdition
New Delhi, 2007.	uon, 4 Lunion
Reference Books:	
1. Discrete Time Signal Processing, Oppenheim & Schaffer, PHI,2003.	
2. Digital Signal Processing, S. K. Mitra, Tata Mc-Graw Hill, 3 rd Edition, 2010.	
3. Digital Signal Processing, Lee Tan: Elsevier publications, 2007.	
Web Link and Video Lectures:	
1. https://www.classcentral.com/course/dsp	
2. https://ocw.mit.edu/resources/res-6-008-digital-signal-processing-spring-2011/	

Verilog HDL
B.E., V Semester, Electronics & Communication Engineering/ Telecommunication Engineering
[As per Choice Based Credit System (CBCS) scheme]

	Ins per choice Dased Credit	System (CDCS) selicine		
Subject Code	15EC53	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50 (10 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CREDITS	S = 04		
Course objectives: This cour	se will enable students to:	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Differentiate betwee	on Varilog and VHDI description			
• Differentiate betwee		15.		
• Learn different ver	log HDL and VHDLconstructs.			
• Familiarize the diffe	erent levels of abstraction in Veril	log.		
• UnderstandVerilog	l'asksandDirectives.			
Understandtimingar	iddelaySimulation.			
LearnVHDLatdesig	nlevelsofdataflow, behavioral and	structural for effective mo	deling of digital	circuits.
				ррт
	Module-1			KD I Laval
Our mui anu of Di sital Desia				
Evolution of CAD amorgon	in with verilogHDL	Warilog UDI ? trands in		L_1, L_2, L_3
HDI s (Text1)	ceoindes, typicainde-now, why	vernog HDL?, trends in		
Hierarchical Modeling Co	ncents			
Top-downandbottom-upde	signmethodology differencesbety	ween		
modulesandmoduleinstances partsofasimulation designblock stimulus block (Text1)				
modules and module instances, parts of a simulation, designolock, simulas of ock. (Text1)				
	Module-2			
Basic Concepts				L1, L2, L3
Lexical conventions, data t	types, system tasks, compiler dire	ectives. (Text1)		
Modules andPorts				
Module definition, port de	claration, connecting ports, hierar	rchical name referencing	.(Text1)	
_				
	Module 2			
	Module-3			
Gate-Level Modeling	.,,			L1, L2, L3
Modeling using basic Ver	ilog gate primitives, description	of and/or and but/not t	ype gates, rise,	
fall and turn-off delays, mi	in, max, and typical delays. (Text	(1)		
Continuous assignments	delay analification armagian	ananatana anananda	operator trace	
(Text1)	delay specification, expressions	s, operators, operands,	operator types.	
(Text1)				
	Module-4			
Behavioral Modeling				L1 L2
Structured procedures. init	ial and always, blocking and non	-blocking		L3
· · /	• • •	-		

statements, delay control, generate statement, event control, conditional statements, Multiway branching, loops, sequential and parallel blocks. (Text1) Module-5 L1. L2. L3 Introduction to VHDL Introduction: Why use VHDL?, Shortcomings, Using VHDL for Design Synthesis, Design tool flow, Font conventions. Entities and Architectures: Introduction, A simple design, Design entities, Identifiers, Data objects, Data types, and Attributes. (Text 2) Course Outcomes: At the end of this course, students should be able to Develop Verilog programs in gate, dataflow (RTL), behavioral and switch modeling levels of Abstraction & simple programs in VHDL in different styles. Identify the suitable Abstraction level for a particular digital design. • • Develop the programs more effectively using Verilog tasks and directives. • ٠ Develop verilog code for timing and delay Simulation Develop and verify the functionality of digital circuit/system using test benches.usingvhdl and verilog • Question paper pattern: • The question paper will have tenquestions • Each full question consists of 16marks. • Therewillbe2fullquestions(withamaximumofthreesubquestions)from each module. • Eachfullquestionwillhavesubquestionscoveringallthetopicsundera module • The students will have to answer 5 full questions, selecting one full question from each module Text Books: 1. Samir Palnitkar, "Verilog HDL: A Guide to Digital Designand Synthesis", Pearson Education, SecondEdition. 2. Kevin Skahill, "VHDL for Programmable Logic", PHI/Pearson education, 2006. Reference Books: 1. Donald E. Thomas, Philip R. Moorby, "The Verilog Hardware Description Language", Springer Science+Business Media, LLC, Fifthedition. 2. Michael D. Ciletti, "Advanced Digital Design with the Verilog HDL" Pearson (Prentice Hall), Secondedition. 3. Padmanabhan, Tripura Sundari, "Design through Verilog HDL", Wiley, 2016 orearlier. Web Link and Video Lectures:

1. https://www.coursera.org/courses?query=verilog

INFORMATION THEORY AND CODING

B.E., V Semester, Electronics & Communication Engineering / Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC54	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50 (10 Hours / Module)	Exam Hours	03	
Lecture Hours				
	CREDI	TS - 04		
Course Objectives: This con	urse will enable students to:			
 Understandtheconce independentsource. 	eptofEntropy,Rateofinformatio	nandorderofthesource	e with reference to depend	dent and
• Study various source	e encodingalgorithms.			
• Model discrete & c	ontinuous communicationchan	nels.		
Study various error	control codingalgorithms.			
	Mod	ules		
	Module-1			RBT Level
Information Theory: In	ntroduction, Measure of infor	mation, Information	content of message,	L1, L2,
Average Information cor	ntent of symbols in Long Ind	lependent sequences,	Average Information	L3
content of symbols in Lor	ng dependent sequences, Marko	ov Statistical Model o	f Information Sources,	
Entropy and Information	rate of Markoff Sources (Section	on 4.1, 4.2 ofText		
1).				
	Module-2			
Source Coding: Source co	oding theorem. Prefix Codes, K	raft McMillan Inequa	lity property – KMI	L1. L2.
(Section 2.2 of Text 2).		1		L3
Encoding of the Source O	utput, Shannon's Encoding Al	gorithm (Sections 4.3	, 4.3.1 of Text 1).	
Shannon Fano Encoding	Algorithm, Huffman codes, Ext	ended Huffman codi	ng, Arithmetic Coding,	
Lempel – Ziv Algorithm (Sections 3.6, 3.7, 3.8,			
3.10 of Text 3).				
,				
Module-3				
InformationChannels:Co	mmunicationChannels(Section	4.4ofText1). Channel	Models,	L1, L2,
Channel	Matrix, Joint prol	babilty	Matrix, Binary	L3
Symmetric Channel, Syst	em Entropies, Mutual Informat	ion, Channel Capacity	y, Channel	
Channels (Sections 4 ?	meure Channel, Dinary Efasur(e Channel, Muroga,s	rneorem, conuneuos	
4.3. 4.4. 4.6. 4.7 of Text 3).			
	/-			

Module-4

Error Control Coding :	L1, L2, L3
Introduction, Examples of Error control coding, methods of Controlling Errors, Types of	
Errors, types of Codes, Linear Block Codes: matrix description of Linear Block Codes, Error	
Detection and Error Correction Capabilities of Linear Block Codes, Single Error Correcting	
hamming Codes, Table lookup Decoding using Standard Array.	
Binary Cyclic Codes: Algebraic Structure of Cyclic Codes, Encoding using an (n-k) Bit Shift	
register, Syndrome Calculation, Error Detection and Correction	
(Sections 9.1, 9.2, 9.3, 9.3.1, 9.3.2, 9.3.3 of Text 1).	
Module	
-5	
Some Important Cyclic Codes: Golay Codes, BCH Codes(Section 8.4 – Article 5 of Text 2).	L1, L2, L3
Convolution Codes : Convolution Encoder, Time domain approach, Transform domain	
approach, Code Tree, Trellis and State Diagram, The ViterbiAlgorithm)(Section8.5–	
Course Outcomes: At the end of the course the students will be ableto:	
• Make use of the concepts of dependent & independent source to measure the information, e	entropy,
rate of information and order of a source.	
Construct the information codes using Shannon Encoding, Shannon Fano, Prefix and Huffn	nan
Encoding Algorithms.	
• Model the continuous and discrete communication channels using input, output and joint probabilities.	
 Develop a codeword comprising of the check bits computed using Linear Block codes, cycliconvolution codes 	ic codes &
 Examine the encoding and decoding circuits for Linear Block codes, cyclic codes, convolut BCH and Golay codes. 	tion codes,
Question paper pattern:	
• The question paper will have tenquestions	
• Each full question consists of 16marks.	
• Therewillbe2fullquestions(withamaximumofthreesubquestions)from eachmodule.	
• Eachfullquestion will have subquestions covering all the topics under a module	
• The students will have to answer 5 full questions, selecting one full question from each	module
Tart Poeke	
1. Digitalandanalogcommunicationsystems K SamShanmugam JohnWiley India Pyt Ltd 19	96
2 Digital communication Simon Hawkin John WilowIndia Put Ltd 2008	
2. Dignacommunication, simon raykin, joint whey indiar vt. Etd. 2008.	. 1
3. Information LieoryandCoding,MuralidnarKulkarni,K.S.Snivaprakasna, wiley India Pvt. D	ta,
2015,ISBN:978-81-265-5305-1.	
Reference Books:	
1. ITC and Cryptography, Ranjan Bose, TMH, II edition, 2007	
2. Principlesofdigitalcommunication, J. Das, S.K. Mullick, P.K. Chatterjee, Wiley, 1986 -	

Technology & Engineering

- 3. DigitalCommunications–FundamentalsandApplications,BernardSklar, SecondEdition,PearsonEducation,2016,ISBN:9780134724058.
- 4. InformationTheoryandCoding,K.N.Haribhat,D.GaneshRao,Cengage Learning, 2017.

Web Link and Video Lectures:

1. https://www.coursera.org/learn/information-theory

2. https://www.classcentral.com/course/informationtheory

<u>NANOELECTRONICS</u> B.E., V Semester, Electronics & Communication Engineering / Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]					
Subject Code	15EC551	IA Marks	20		
Number of Lecture	03	Exam Marks	80		
Hours/Week					
Total Number of	40 (8 Hours /Module)	Exam Hours	03		
LectureHours					
CREDITS – 03					

Course Objectives: This course will enable students to:

- Enhancebasicengineeringscienceandtechnicalknowledgeof nanoelectronics.
- Explainbasicsoftop-downandbottom-upfabricationprocess, devices and systems.
- Describe technologies involved in modern day electronic devices.
- $\bullet \quad Know various nano structures of carbon and then a ture of the carbon bond itself.$
- Learnthephotophysicalpropertiesofsensorusedingeneratingasignal.

Module-1	RBT
	Level
Introduction: Overview of nanoscience and engineering. Development milestones in microfabrication and electronic industry. Moore's law and continued miniaturization, Classification of Nanostructures, Electronic properties of atoms and solids: Isolated atom, Bonding between atoms, Giantmolecularsolids, Freeelectronmodelsandenergybands, crystalline solids, Periodicity of crystal lattices, Electronic conduction, effects of nanometerlengthscale, Fabricationmethods: Topdownprocesses, Bottom upprocesses methods for templating the growth of nanomaterials, ordering of nanosystems (Text 1).	L1, L2
Module-2	<u></u>
Characterization: Classification, Microscopic techniques, Field ion	L1, L2
microscopy, scanning probetechniques, diffraction techniques: bulk and surface diffraction	
techniques (Text1).	
Inorganic semiconductor nanostructures: overview of semiconductor physics. Quantum	
confinement in semiconductor nanostructures: quantum wells, quantum wires, quantum dots,	
super-lattices, band	
offsets, electronic density of states (Text 1).	
Module-3	
Fabrication techniques: requirements of ideal semiconductor, epitaxial growth of quantum wells,	L1, L2
lithography and etching, cleaved-edge over growth, growth of vicinal substrates, strain induced	
dots and wires, electrostaticallyinduceddotsandwires, Quantum wellwidth fluctuations, thermally	
annealed quantum wells, semiconductor nanocrystals, collidal quantum dots, self-assembly	
tecnniques.(Text1).	
rnysical processes: modulation doping, quantum nall effect, resonant tunneling, charging effects,	
ballistic carrier transport, inter bally absorption, intrabally absorption, Light emission processes,	
and dephasing characterization of semiconductor nanostructures; optical	
and dephasing, characterization of semiconductor nanostructures:optical	

electrical and structural (Text 1). Module-4 Carbon Nanostructures: Carbon molecules, Carbon Clusters, Carbon Nanotubes, application of Carbon L1. L2 Nanotubes. (Text 2) Module-5 Nanosensors: Introduction, What is Sensor and Nanosensors?, What makes them Possible?, Order L1. L2 From Chaos, Characterization, Perception, Nanosensors Based On Quantum Size Effects, Electrochemical Sensors, SensorsBasedOnPhysicalProperties, Nanobiosensors, SmartdustSensor for the future. (Text3) Applications: Injection lasers, quantum cascade lasers, single-photon sources, biological tagging, optical memories, coulomb blockade devices, photonic structures, QWIP's, NEMS, MEMS (Text 1). Course outcomes: After studying this course, students will be able to: KnowtheprinciplesbehindNanoscienceengineeringand Nanoelectronics. Knowtheeffectofparticlessizeonmechanical, thermal, optical and electrical properties • ofnanomaterials. Knowtheproperties of carbon and carbon nanotubes and its applications. Knowthepropertiesusedforsensingandtheuseofsmartdust sensors. • Applytheknowledgetoprepareandcharacterizenanomaterials. Analysetheprocessflowrequiredtofabricatestate-of-the-art transistortechnology. Question paper pattern: • The question paper will have tenguestions • Each full question consists of 16marks. • Therewillbe2fullquestions(withamaximumofthreesubquestions)from each module. • Eachfullquestionwillhavesubquestionscoveringallthetopicsundera module The students will have to answer 5 full questions, selecting one full question from each module Text Books: 1. EdRobertKelsall, IanHamley, MarkGeoghegan, "NanoscaleScienceand Technology", John Wiley,2007. 2. CharlesPPoole, Jr, FrankJOwens, "IntroductiontoNanotechnology", John Wiley, Copyright 2006, Reprint2011. 3. TPradeep, "Nano: Theessentials-Understanding Nanoscience and Nanotechnology", TMH. Reference Book: EdWilliam AGodd ard III, Donald WB renner, Sergey E. Lyshevski, Gerald JIafrate, "HandBookofNanoscienceEngineeringandTechnology", CRCpress, 2003.

SWITCHING & FINITE AUTOMATA THEORY

B.E.,	V Semes	ster, Electi	ronics & O	Communic	ation Er	gineering	/ Teleco	ommunication	Engineeri	ing

[As per Choice Based Credit System (CBCS) scheme]					
Subject Code	15EC552	IA Marks	20		
Number of Lecture	03	Exam Marks	80		
Hours/Week					
Total Number of	40 (8 Hours /Module)	Exam Hours	03		
Lecture Hours					
CREDITS – 03					

Course Objectives: This course will enable students to:

- $1. \ Understand the basics of threshold logic, effect of hazards on digital circuits and techniques of fault detection$
- 2. Explain finite state model and minimization techniques
- 3. Know structure of sequential machines, and state identification
- 4. Understand the concept of fault detectionexperiments

Modules	
Module-1	RBT
	Level
Threshold Logic : Introductory Concepts: Threshold element, capabilities and limitations of threshold	L1, L2,
logic, Elementary Properties, Synthesis of Threshold networks: Unate functions, Identification and	L3
realization of thresholdfunctions, Themapasatoolinsynthesizing thresholdnetworks.	
(Sections 7.1, 7.2 of Text)	
Module-2	
Reliable Design and Fault Diagnosis : Hazards, static hazards, Design of Hazard-free Switching Circuits,	L1, L2,
Fault detection in combinational circuits, Fault detection in combinational circuits: The faults, The Fault	L3
Table, Covering the fault table, Fault location experiments: Preset experiments, Adaptive experiments,	
Boolean differences, Fault detection by path	
sensitizing. (Sections 8.1, 8.2, 8.3, 8.4, 8.5 of Text)	
Module-3	
Sequential Machines: Capabilities, Minimization and Transformation The Finite state model and	L1, L2,
definitions, capabilities and limitations of finite state machines, State equivalence and	L3
machine minimization: k- equivalence, The minimization Procedure,	
Machine equivalence,	
Simplificationofincompletelyspecifiedmachines.(Section10.1,10.2,10.3,	
10.4 of Text)	
Madula 4	
Structure of Sequential Machines: Introductory example, State assignment using partitions: closed	LI, L2,
partitions, The lattice of closed partitions, Reduction of output dependency, Input dependence and	L3
autonomous clocks, Covers and generation of closed partitions by state splitting: Covers, The	
implication graph, An application of state splittingto	
parallel decomposition. (Section 12.1, 12.2, 12.3, 12.4, 12.5, 12.6 of Text)	
Module-5	
State_Identification and Fault Detection Experiments:	1112
Homing experiments. Distinguishing experiments. Mechine identification	$12^{1}, 12^{2}, 12^{2}$
noming experiments, Distinguishing experiments, Machine Identification,	ப

Fault detection experiments, Design of diagnosable machines, Second algorithmforthedesignoffaultdetectionexperiments.(Sections13.1,13.2, 13.3, 13.4, 13.5, 13.6, 13.7 of Text)

Course outcomes: At the end of the course, students should be ableto:

- Explain the concept of thresholdlogic
- Understand the effect of hazards on digital circuits and fault detection and analysis
- Define the concepts of finite statemodel
- Analyze the structure of sequentialmachine
- Explainmethodsofstateidentification and fault detection experiments

Question paper pattern:

- The question paper will have tenquestions
- Each full question consists of 16marks.
- Therewillbe2fullquestions(withamaximumofthreesubquestions)from eachmodule.
- Eachfullquestionwillhavesubquestionscoveringallthetopicsundera module
- The students will have to answer 5 full questions, selecting one full question from each module

Text Book:

Switching and Finite Automata Theory – ZviKohavi, McGraw Hill, 2nd edition, 2010 ISBN: 0070993874.

Reference Books:

1. Fault Tolerant AndFault Testable Hardware Design -Parag K Lala, Prentice Hall Inc. 1985.

2. DigitalCircuitsandLogicDesign.-CharlesRothJr,LarryL.Kinney,Cengage Learning, 2014, ISBN: 978-1-133-62847-7.

<u>OPERATING SYSTEM</u> B.E., V Semester, Electronics & Communication Engineering / Telecommunication Engineering

	[As per Choice Based Cre	edit System (CBCS) s	scheme]		
Subject Code	15EC553	IA Marks	20		
Number of Lecture	03	Exam Marks	80		
Hours/Week					
Total Number of	40 (8 Hours /Module)	Exam Hours	03		
LectureHours					
	CRED	DITS – 03			
Course objectives: This cou	rse will enable students to:				
• Understand the serv	vices provided by an operating	gsystem.			
• Understand how pro	ocesses are synchronized and	scheduled.			
• Understanddifferen	tapproachesofmemorymanage	ementandvirtualmem	ory management.		
• Understand the stru	cture and organization of the	filesystem			
• Understand interpro	cess communication and dea	dlocksituations.			
				Γ	
	Module-1			RBT	
				Level	
Introduction to Operating Sy	vstems			L1, L2	
OS, Goals of an OS, C	operation of an OS, Comp	utational Structures,	Resource allocation		
Retab processing Multi pr	stem Performance and User	Convenience, Class	ses operating System,		
Systems (Topics from Sect	ions 1.2 1.3 2.2 to 2.8 of Tex	t)	unbutedOperating		
Systems (Topies nom See	10115 1.2, 1.3, 2.2 to 2.8 0110x				
	Module-2		m ::: m1 1		
Process Management: OS	View of Processes, PCB, Threads Non proceedings	Fundamental State	Transitions, Threads,	L1, L2	
Scheduling- RR and LCN	Long term medium term at	nd short term schedu	ling in a time sharing		
system (Topics from Section	ons 3.3, 3.3.1 to 3.3.4, 3.4, 3.4	1.1, 3.4.2, 4.2, 4.3, 4.	4.1		
of Text).	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
	Module-3				
Memory Management: Cor	ntiguous Memory allocation.	Non-Contiguos Mem	ory Allocation.	1112	
Paging, Segmentation, Seg	mentation with paging, Virtua	al Memory Managem	ient, Demand	L1, L2	
Paging, Paging Hardware,	VM				
handler,FIFO,LRUpagereplacementpolicies(TopicsfromSections5.5to 5.9, 6.1 to 6.3, except					
Optimal policy and 6.3.1of	Text).				
	Module-4				
File Systems: File systems	s and IOCS. File Operations	. File Organizations.	Directory structures.	L1 L2 L3	
File Protection, Interface between File system and IOCS, Allocation of disk space, Implementing					
file access (Topics from					
Sections 7.1 to 7.8 of Text).					
Module-5					
Message Passing and Dea	dlocks: Overview of Messag	e Passing, Implemen	ting message passing.	L1. L2. L3	
Mailboxes, Deadlocks, D	eadlocks in resource allo	cation, Resource	state modelling,	,,	
Deadlock detection					
algorithm,DeadlockPreven	tion(TopicsfromSections10.1	to10.3,11.1to			

11.5 of Text).	
Course outcomes: After studying this course, students will be able to:	
• Identify the goals, structure, operation and types of operating systems.	
• Utilize process management & scheduling techniques to find performance factors.	
• Make use of suitable techniques for contiguous and non-contiguous memory allocation.	
 Identify various types of organization of file systems and IOCS. 	
• Identify various message passing, deadlock detection and prevention methods.	
Question paper pattern:	
• The question paper will have tenquestions	
• Each full question consists of 16marks.	
• Therewillbe2fullquestions(withamaximumofthreesubquestions)fromeach module.	
• Eachfullquestionwillhavesubquestionscoveringallthetopicsunderamodule	
• Thestudentswillhavetoanswer5fullquestions, selecting one fullquestion from each module	
There Days here	
Text Book:	
Operating Systems – A concept based approach, by Dhamdare, TMH, 2 nd edition.	
Reference Books:	
1. Operating systems concepts, Silberschatz and Galvin, John Wiley India Pvt. Ltd, 5 th edition,2001.	
2. Operatingsystem-internalsanddesignsystem, WilliamStalling, Pearson Education, 4th ed, 2006.	
3. Design of operating systems, Tannanbhaum, TMH,2001.	

ELECTRICAL ENGINEERING MATERIALS

B.E., V Semester, Electronics & Communication Engineering/ Tel	ecommunication Engineering
[As non Choice Deced Credit System (CDCS	E) sohomol

	[As per Choice Based Crec	lit System (CBCS) sc	heme	
Subject Code	15EC554	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8Hours/Module)	Exam Hours	03	
Lecture Hours				
	CREI	DITS – 03		
Course Objectives: This cour	se will enable students to:			
Understandtheform	ationofbandsinmaterialsandthe	classificationofmater	ials on the basis of bandth	neory
• Understandtheclass	ficationofmagneticmaterialsor	thebasisoftheirbehav	iorin an external magneti	zingfield.
• Understandthechara	cteristicsandpropertiesofcondu	ctingandsupercondu	cting materials	-
• Understandtheelectr	icalcharacteristicsofthemateria	altobeconsideredonth	e basis of theiruses.	
Classifvelectricalen	gineeringmaterialsintolowand	nighresistancemateria	ls	
	8			
	Me	odules		
	Module-1			RBT Level
Band Theory of Solids: for Discontinuities in E	Introduction to free electron t vs. K curve, Formation of So	heory, Kroning- Pen blid Material, Forma	ney Model, Explanation tion of Band in Metals,	L1, L2

Module-1	RBT Level	
Band Theory of Solids: Introduction to free electron theory, Kroning- Penney Model, Explanation for Discontinuities in E vs. K curve, Formation of Solid Material, Formation of Band in Metals, Formation of Bands in SemiconductorsandInsulatingMaterials,ClassificationofMaterialsonthe Basis of Band Structure, Explanation for differences in the Electrical properties of different Materials. Important Characteristics of a Band Electron,Numberofenergystatesperband,ExplanationforInsulatingand Metallic Behavior of Materials, Concept ofHole.	L1, L2	
Module-2		
Magnetic Properties of Materials: Introduction, Origin of Magnetism, Basic Terms in Magnetism, Relation between Magnetic Permeability and Susceptibility, Classification of magnetic Materials, Characteristics of Diamagnetic Materials, Paramagnetic Materials, Ferromagnetic Materials, FerrimagneticMaterials,Langevin'sTheoryofDiamagnetism,Explanationof Dia, Para and Ferromagnetism, Ampere's Lam in Dia, Para and Ferromagnetism, Hystersis and Hystersis loss, Langevin's Theory of paramagnetism, Modification in the Langevin's Theory, Anti- FerromagnetismandNeelTemperature,FerrimagneticMaterials,Properties of some important Magnetic Materials,HardandSoftFerromagneticMaterialsandtheir Applications.	L1, L2	
Module-3		
Behavior of Dielectric Materials in ACand DCFields: Introduction,Classification of Dielectric Materials at Microscopic level, Polar DielectricMaterials,Non-polarDielectricMaterials,KindsofPolarizations,behaviorof	L1, L2	
dielectric materials, Three electric Vectors, Gauss's Law in a Dielectric, Electric Susceptibility and Static Dielectric constant, Effect of Dielectric medium upon capacitance, macroscopic electric field, Microscopic Electric field, temperature dependence of dielectric constant, polar dielectric in ac and dc fields, behavior of polar dielectric at high frequencies, Dielectric loss, Dielectric strength and Dielectric Breakdown, Various kinds of Dielectric Materials, Hysteresis in Ferroelectric Materials, Applications of Ferroelectric Materials in Devices.		
---	--------	--
Module-4		
Conductivity of Metals and Superconductivity: Introduction, Ohm's law, Explanation for the dependence of electrical resistivity upon temperature, Free-electron theory of metals, Application of Lorentz-Drude free-electron theory, Effect of various parameters on Electrical Conductivity, Resistivity Ratio, Variation of resistivity of alloys with temperature, Thermal Conductivity of Materials, Heat produced in Current Carrying Conductor, Thermoelectric Effect, Thermoelectric Series, Seebeck's Experiment.	L1, L2	
Discovery of superconductivity, superconductivity and transition temperature, superconducting materials, explanation of superconductivity phenomenon, characteristics of superconductors, change in thermodynamic parameters in superconducting state, frequency dependence of superconductivity, current status of high temperature superconductors, practical applications of superconductors.		
Module-5		
Electrical Conducting and Insulating materials: Introduction, Classification of conducting materials, difference in properties of Hard- Drawn and Annealed copper, standard conductors, comparison between some popular Low-Resistivity Materials, Low-Resistivity Copper Alloys, Electrical contact materials and their selection, classification of contact materials, Materials for Lamp Filaments, Preparation of Tungsten Filaments. Insulating gases, Liquids and solids and their characteristics, Selection of the insulating material, other important properties of Insulating materials, Thermal characteristics, chemical properties of Insulating materials on the basis ofstructure.	L1, L2	
Course Outcomes: At the end of the course, students will be able to		
 Understandthevariouskindsofmaterialsandtheirapplicationsinacanddc fields. Understand the conductivity of superconductivity ofmaterials. Explaintheelectricalpropertiesofdifferentmaterialsandmetallicbehaviorof materials on the basis of bandtheory. Explainthepropertiesandapplicationsofallkindofmagneticmaterials. Explainthepropertiesofelectricalconductingandinsulatingmaterials. Assessavarietyofapproachesindevelopingnewmaterialswithenhanced performance to replace existingmaterials. 		
Question paper pattern:		
• The question paper will have tenquestions		

- Each full question consists of 16marks.
- Therewillbe2fullquestions(withamaximumofthreesubquestions)fromeach module.
- $\bullet \ \ Each full question will have subquestions covering all the topic sunder a module$
- $\bullet \quad The students will have to answer 5 full questions, selecting one full question from each module$

Text Book:

RKShuklaandArchanaSingh, "ElectricalEngineeringMaterials" McGrawHill, 2012, ISBN:978-1-25-90062-03.

Reference Books:

- 1. S.O.KASAP, "ElectronicMaterialsandDevices" 3rdedition, McGrawHill, 2014, ISBN -978-0-07-064820-3.
- 2. C.S.IndulkarandS.Thiruvengadam,S.,"AnIntroductiontoElectrical Engineering Materials", ISBN-9788121906661.

MSP430 MICROCONTROLLER B.E., V Semester, Electronics & Communication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC555	IA Marks	20	
Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of	40 (8 Hours / Module)	Exam Hours	03	
	CPEDIT	TS 03		
Course objectives: This cou	urse will enable students to:	3-03		
 Understandthearchited ProgramMSP430using Understandthefunction Describe the power sa Explain the low power 	the will enable students to: cturalfeaturesandinstructionsetof1 gthevariousinstructionsfordifferer nsofthevariousperipheralswhichar wing modes inMSP430. r applications usingMSP430.	6bitmicrocontrollentapplications. reinterfacedwith M	er MSP430. ISP430.	
	Module-1			RBT Level
MSP430 Architecture : Introduction –Where does the MSP430 fit, The outsideview,Theinsideview-Functionalblockdiagram,Memory,Central Processing Unit, Memory Mapped Input and Output, Clock Generator, Exceptions: Interrupts and Resets, MSP430family. (Text: Ch1- 1.3 to 1.7, Ch2- 2.1 to 2.7, Ch5- 5.1, 5.7 up to 5.7.1)			L1, L2	
	Module-2			
Addressing Modes &Inst Emulated Instructions, Pr	ruction Set-Addressing Modes, In ogram Examples. (Text: Ch5- 5.2	struction set, Const to5.5)	ant Generator and	L1, L2, L3
	Module-3			
Clock System, Interrupts and Operating Modes-Clock System, Interrupts, What happens when an interrupted is requested, Interrupt ServiceRoutines,LowPowerModesofOperation,WatchdogTimer,Basic Timer1, Real Time Clock, Timer-A: Timer Block, Capture/Compare Channels, Interrupts fromTimer-A. (Text: Ch5 - 5.8 upto 5.8.4, Ch 6-6.6 to 6.8, 6.10, Ch8 -8.1, 8.2, 8.3)			L1, L2	
	Module-4			
Analog Input -Output and Operational Amplifiers, DA LCD interfacing. (Text: Ch9 – 9.1 up to 9.1 9.11.5, 9.12 (without 9.12	PWM - Comparator-A, ADC10, A AC, Edge Aligned PWM, Simple P 2, 9.4, 9.5 up to 9.5.1, 9.7, 9.8 u 2.1), 8.6.2 to 8.6.4)	DC12, Sigma- Delt WM, Design of PV p to 9.8.1,	a ADC, Internal VM.	L1, L2
	Module-5			

Digital Input-Output and SerialCommunication:	L1, L2, L3
ParallelPorts, LightingLEDs, FlashingLEDs, ReadInputfromaSwitch,	
ToggletheLEDstatebypressingthepushbutton, LCDinterfacing.	
Asynchronous Serial Communication Asynchronous Communication with USCL A	
Communications, Derinherels in MSD420, Seriel Derinherel Interface	
Communications, relipherals in MSr450, Senai relipheral interface.	
(Text: Selected topics from Ch4 & Ch7 and Ch7- 7.1, Ch10 – 10.1, 10.2,	
and 10.12)	
Course outcomes: After studying this course, students will be able to:	
 Understandthearchitecturalfeaturesandinstructionsetof16bit microcontrollerMSP430. 	
• Developprogramsusing the various instructions of MSP430 for different applications.	
 Understandthafunctions of the various peripherals which are interfaced with 	
MSP430microcontroller.	
• Describe the power saving modes in MSP430.	
• Explain the low now erapplication susing MSP/30 microcontroller	
• Explainticiowpowerappireationsusingwish 450interocontroner.	
Evaluation of Internal AssessmentMarks:	
It is suggested that at least a few simple programs to be executed by students using any evalua	tion board of
MSP430 for better understanding of the course. This	activity

Question paper pattern:

- The question paper will have tenquestions
- Each full question consists of 16marks.
- Therewillbe2fullquestions(withamaximumofthreesubquestions)fromeach module.
- $\bullet \ \ Each full question will have subquestions covering all the topic sunder a module$
- Thestudents will have to answer 5 full questions, selecting one full question from each module

canbeconsidered for the evaluation of 5 mark sout of 20 Internal assessment marks, reserved for the other activities.

Text Book:

JohnHDavies, MSP430MicrocontrollerBasics, NewnesPublications, Elsevier, 2008.

Reference s:

- 1. ChrisNagy,EmbeddedSystemsDesignusingTIMSP430Series,Newnes Publications, Elsevier,2003.
- 2. User Guide from TexasInstruments.

DSP Lab B.E., V Semester, EC/TC [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15ECL57	IA Marks	20
Number of Lecture	01Hr Tutorial(Instructions)	Exam Marks	80
Hours/Week	+ 02 Hours Laboratory=03		
RBT Levels	L1, L2, L3	Exam Hours	03
	CREDITS – 02		
Course objectives: This	course will enable students to		
• Simulatediscrete	timesignalsandverificationofsamplingtheorem.		
• ComputetheDFT	foradiscretesignalandverificationofitspropertie	susing MATLAB.	
Findsolutiontoth varification of pr	edifferenceequationsandcomputationofconvolu	itionand correlation along w	ith the
Compute and disr	opennes. Maythefilteringoperationsandcomparewiththeth	eoretical values	
 ImplementtheDS 	SP computations on DSP hardware and verify there:	sult.	
I	1		
	Laboratory Experiments		
Following Experimen	ts to be done using MATLAB / SCILAB / OCTA	AVE or equivalent :	
 2. Entrearanden associative p 3. Autoandcros 4. Solving a gir 5. Computation phasespectru 6. (i)Verification (ii) DFT cor 7. Designandin windowtech 8. Designandin Following Experiment 9. Linear con 10. Circular con 11. N-point DI 12. Impulse re 13. Implement 	scorrelationoftwogivensequences, communi- scorrelationoftwosequences and verification of the ven difference equation. nofNpointDFT of a given sequence and top lot magn um (using DFT equation and verify it by built-inrout on of DFT properties (like Linearity and Parseval's inputation of square pulse and Sinc function etc applementation of FIR filter to meet given specificat niques). applementation of IIR filter to meet given specification its to be done using DSP kit volution of two sequences involution of two sequences FT of a given sequence sponse of first order and second order system ation of FIR filter	neirproperties nitudeand tine). theorem,etc.) c. ions(using different	
Course outcomes: O Apply sa Compute Solve dif	n the completion of this laboratory course, the stu- mpling theorem and effective reconstruction of s the DFT for a discrete signal and verification of fference equations and perform different operation	udents will be able to: ignal. its properties using MATLA ns on discrete time signals	В.

• Build DSP computations on TMS processor and verify the result

Conduct of PracticalExamination:

1. All laboratory experiments are to be included for practical examination.

- 2. Strictlyfollowtheinstructionsasprintedonthecoverpageofanswerscript for breakup ofmarks.
- 3. ChangeofexperimentisallowedonlyonceandMarksallottedtotheprocedure part to be madezero.

<u>HDL Lab</u>
B.E., V Semester, EC/TC
[As per Choice Based Credit System (CBCS) scheme]

	[As per Choice Based Credit System ((CBCS) scheme]	
Subject Code	15ECL58	IA Marks	20
Number of Lecture	01Hr Tutorial(Instructions)	Exam Marks	80
Hours/Week	+ 02 Hours Laboratory $= 03$		
RBT Levels	L1, L2, L3	Exam Hours	03
	CREDITS – 02		
Course objectives: This cour	se will enable students to:		
• Familiarize with the	e CAD tool to write HDLprograms.		
• Understand simulat	ion and synthesis of digitaldesign.		
Program FPGAs/Cl	PLDs to synthesise the digital designs.		
Interfacehardwarete	oprogrammableICsthroughI/Oports.		
ChooseeitherVeril	gorVHDLforagivenAbstractionlevel.		
Note: Programming can	be done using any compiler. Download th	ne programs on a FPGA/CPL	D boards such as
Apex/Acex/Max/Spartan/	Sinfi or equivalent and performance te	sting may be done using 32	channel pattern
generator and logic analy	zerapartfromverificationbysimulationwith	ntoolssuchasAltera/Modelsim	or equivalent.
	Laboratory Experiment	ts	
Part-A: PROGRAMMING			
1. Write Verilog cod	le to realize all the logicgates		
2. Write a Verilog p	rogram for the following combinationalde	esigns	
a. 2 to 4deco	oder	0	
b. 8 to 3 (en	coder without priority & withpriority)		
c. 8 to 1 mul	tiplexer.		
d. 4 bit bina	ry to grayconverter		
e. Multiplex	er, de-multiplexer, comparator.		
3. WriteaVHDLand	VerilogcodetodescribethefunctionsofaFul	Adderusing three modelings	tyles.
4. WriteaVerilogcod	letomodel32bitALUusingtheschematicdia	gramshown below	
	A (31:0) B (31:0)		
	Oncode (3:0)		
	Output		
	Enable		
• ALU should use of	combinational logic to calculate an output	based on the four bit op-cod	einput.

• ALU should pass the result to the out bus when enable line in high, and tri- state the out bus when the enable line islow.

• ALUshoulddecodethe4bitop-codeaccordingtotheexamplegivenbelow.

OPCODE	ALU Operation
1.	A+B
2.	A-B
3.	A Complement
4.	A*B
5.	A AND B
6	

- 5. DeveloptheVerilogcodeforthefollowingflip-flops, SR, NF, KandT.
- 6. Designa4bitbinary,BCDcounters(SynchronousresetandAsynchronousresetandAsynchronousresetandAsynchronousreset) and "any sequence" counters, using Verilogcode.

Part-B: INTERFACING (at least four of the following must be covered usingVHDL/Verilog)

- 1. WriteHDLcodetodisplaymessagesonanalphanumericLCDdisplay.
- 2. Write HDL code to interface Hex key pad and display the key code on seven segmentdisplay.
- 3. WriteHDLcodetocontrolspeed,directionofDCandSteppermotor.
- 4. Write HDL code to accept Analog signal, Temperature sensor and display the data on LCD or Seven segmentdisplay.
- 5. WriteHDLcodetogeneratedifferentwaveforms(Sine,Square,Triangle,Ramp etc.,) using DAC change thefrequency.
- 6. Write HDL code to simulate Elevatoroperation.

Course Outcomes: At the end of this course, students should be ableto:

- DEVELOP AND Write the Verilog/VHDL programs to simulate Combinational circuits in Dataflow, Behavioral and Gate level Abstractions
- DEVELOP AND Describe sequential circuits like flip flops and counters in Behavioral description and obtain simulation waveforms
- DEVELOP AND Synthesize Combinational and Sequential circuits on programmable ICs and test the hardware
- DEVELOP AND Interface the hardware to the programmable chips and obtain the required output
- DEVELOP HARDWARE DESCRIPTIVE PROGRAMMES USING Verilog or VHDL for a given Abstraction level

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- 2. Strictlyfollowtheinstructions as printed on the cover page of an swerscript for breakup of marks.
- 3. ChangeofexperimentisallowedonlyonceandMarksallottedtothe procedure part to be madezero.

<u>5thSemester Open Electives Syll</u>	abus for the Courses offered by EC/TC Boa	ard	
H [As per Choi	<u>Automotive Electronics</u> 3.E V Semester (Open Elective) ce Based Credit System (CBCS) scheme		
Subject Code	15EC561	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	40(08 Hrs per Module)	Exam Hours	03
	CREDITS – 03		
 Course objectives: This course will enable students to: Understandthebasicsofautomobiledynamicsanddesignelectronicsto complement those feature Designandimplementtheelectronicsthatattributethereliability,safety,and smartness to the auto providing add-oncomforts. 			res. tomobiles,
	Module-1		RBT Level
Automotive Fundamentals Overview – Evolution of Automotive Electronics, Automobile Physical Configuration, Survey of Major Automotive Systems, The Engine – Engine Block, Cylinder Head, Four Stroke Cycle, Engine Control, Ignition System - Spark plug, Highvoltage circuit and distribution, Spark pulse generation, Ignition Timing, Diesel Engine,DriveTrain- Transmission,DriveShaft,Differential,Suspension, Brakes, Steering System (Text 1: Chapter1), Starter Battery –Operating principle: (Text 2:Pg.407-410) (4hours)			L1, L2
Emissions, Fuel Economy, Concept of an Electronic Engine Control – Exhaust Emissions, Fuel Economy, Concept of an Electronic Engine control system, Definition of General terms,Definition of Engine performance terms, Engine mapping, Effect of Air/Fuel ratio, sparktimingandEGR onperformance,ControlStrategy,ElectronicFuel controlsystem,Analysisofintakemanifoldpressure,ElectronicIgnition. (Text 1: Chapter 5) (4hours)			
	Module-2		

Automotive Control System applications of Sensors and Actuators – TypicalElectronicEngineControlSystem, Variablestobemeasured(Text 1:Chapter6) (1hour) Automotive Sensors – Airflow rate sensor, Strain Gauge MAP sensor, Engine Crankshaft Angular Position Sensor, Magnetic Reluctance Position Sensor, Hall effect Position Sensor, Shielded Field Sensor, Optical Crankshaft Position Sensor, Throttle Angle Sensor (TAS), Engine Coolant Temperature (ECT) Sensor, Exhaust Gas Oxygen (O2/EGO) Lambda Sensors, Piezoelectric Knock Sensor. (Text 1: Chapter 6) (5 hours) Automotive Actuators – Solenoid, Fuel Injector, EGR Actuator, Ignition System (Text 1:Chapter6) (2hours)	L1, L2
Module-3	
Digital Engine Control Systems Digital Engine control features Control	1110
Digital Engine ControlSystems – Digital Engine control features, Control modes for fuel Control (Seven Modes), EGR Control, Electronic Ignition Control - Closed loop Ignition timing, Spark Advance Correction Scheme, IntegratedEngineControlSystem- SecondaryAirManagement, Evaporative Emissions Canister Purge, Automatic System Adjustment, SystemDiagnostics.(Text1:Chapter7) (6 hours)	L1, L2
Control Units – Operating conditions, Design, Data processing, Programming, Digital modules in the Control unit, Control unit software. (Text 2:Pg.196-207) (2hours)	
Module-4	
Automotive Networking –Bus Systems – Classification, Applications in the vehicle, Coupling of networks, Examples of networked vehicles (Text 2: Pg. 85-91), Buses - CAN Bus, LIN Bus, MOST Bus, Bluetooth, Flex Ray, Diagnostic Interfaces. (Text 2: Pg. 92-151) (6 hours) Vehicle Motion Control – Typical Cruise Control System, Digital Cruise Control System, Digital Speed Sensor, Throttle Actuator, Digital Cruise Control configuration, Cruise Control Electronics (Digital only), Antilock Brake System (ABS) (Text 1: Chapter 8) (2 hours)	L1, L2
Module-5	
Automotive Diagnostics –Timing Light, Engine Analyzer, On-board diagnostics,Off- boarddiagnostics,ExpertSystems,OccupantProtection Systems– AccelerometerbasedAirBagsystems.(Text1:Chapter10) (2 hours) Future Automotive Electronic Systems – Alternative Fuel Engines, Electric and Hybrid vehicles, Fuel cell powered cars, CollisionAvoidance Radar warning Systems, Low tire pressure warning system Heads Un display Speech Synthesis Navigation – Navigation Sensors Padio	L1, L2, L3
Navigation, Signpost navigation, dead reckoning navigation, Voice Recognition Cell Phone dialing, Advanced Cruise Control, Stability Augmentation, AutomaticdrivingControl(Text1:Chapter11) (6 hours)	

Course Outcomes: At the end of the course, students will be ableto:

- Acquire an overview of automotive components, subsystems, and basics of Electronic Engine Control in today's automotiveindustry.
- Use available automotive sensors and actuators while interfacing with microcontrollers / microprocessors during automotive systemdesign.
- Understand the networking of various modules in automotive systems, communication protocols and diagnostics of the subsystems.
- Design and implement the electronics that attribute the reliability, safety, and smartness to the automobiles, providing add-on comforts and get fair idea on future Automotive ElectronicSystems.

Question paper pattern:

- The question paper will have tenquestions.
- Each full Question consisting of 16marks
- There will be 2 full questions (with a maximum of three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. William B. Ribbens, "Understanding Automotive Electronics", 6th Edition, Elsevier Publishing.
- 2. Robert Bosch Gmbh (Ed.) Bosch Automotive Electrics and Automotive Electronics Systems and Components, Networking and Hybrid Drive, 5th edition, John Wiley& Sons Inc., 2007.

Object Oriented Programming UsingC++

B.E. V Semester (Open Elective)

	[115 per choice Busea creat b]	(CDCD)sellelle	
Subject Code	15EC562	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (08 Hrs/ Module	Exam Hours	03
Lecture Hours			
CREDITS – 03			
Course shipetiyees This course will enable students to			

[As per Choice Based Credit System (CBCS)scheme]

Course objectives: This course will enable students to:

- Define Encapsulation, Inheritance and Polymorphism. •
- Solve the problem with object oriented approach. •
- $\label{eq:analyzetheproblem statement} Analyze the problem statement and build objectoriented systemmodel.$ •
- Describe the characters and behavior of the objects that comprise a system. •
- Explainfunctionoverloading, operatoroverloading and virtual functions.
- Discuss the advantages of object oriented programming over procedure oriented programming. •

Module -1	RBT
	Level
Beginning with C++ and its features: What is $C++2$ Applications and structure of $C++$ program. Different Data types	L1, L2
Variables Different Operators expressions operator overloading and control structures	
in C++ (Tanias from	
C = 2.2 GFT + 0.2	
Ch -2,3 of 1ext).	
Module -2	
Functions, classes and Objects:	L1, L2, L3
Functions, Inline function, function overloading, friend and virtual functions, Specifying a	
class, C++ program with a class, arrays within a class, memory allocation to objects.	
array of objects, members, pointers to members and member functions(Selected	
Tonics from Chan-4.5 of Text)	
Module -3	
Constructors Destructors and Operator overloading: Constructors Multiple	111213
constructors in a class, Copy constructor, Dynamic constructor, Destructors, Defining	L_{1}, L_{2}, L_{3}
operatoroverloading, Overloading Unary and binary operators, Manipulation of strings	
using operators (Selected topics from Chap-6, 7 of Text).	
Module -4	
Inheritance, Pointers, Virtual Functions, Polymorphism: Derived Classes, Single,	L1, L2, L3
multilevel, multiple inheritance, Pointers to objects and derived classes, this pointer,	
Virtual and pure	
virtual functions (Selected topicsfrom Chap-8.9 of Text).	
Module -5	

Streams and Working with files : C++ streams and stream classes, formatted and L1, L2	2, L3
unformatted I/O operations, Output with manipulators, Classes for file stream	
operations, opening and closing a file, EOF (Selected topics from Chap-10, 11 of Text).	
Course Outcomes: At the end of the course, students will be able to:	
• Apply Enconculation Inheritance and Polymorphism	
Appry Encapsulation, innertiance and Polymorphism.	
• Utilize Object Oriented approach to solve problems	
• Examine problem statements and build object oriented models to solve the problems after analys the objects that constitute the system.	ing
• Build solutions using function overloading, operator overloading and virtual functions.	
• Identify advantages of object oriented programming over procedure oriented programming.	
Question paper pattern:	
• The question paper will have tenguestions.	
• Each full Question consisting of 16marks	
• There will be 2 full questions (with a maximum of Three sub questions) from each module	
 Fachfullquestionswillbayesubquestionscoveringallthatonicsundera modula 	
Thesty dents will be verse subjections collecting and the product.	
• Thestudents with a vetoans wer stundues tions, selecting one fun	
question from each module.	
1ext Book:	
Object Oriented Programming with C++, E.Balaguruswamy, IMH, 6th Edition, 2013.	
Chicat Oriented Programming using Chica Debart Lafere	
Galgotianublication 2010	

8051 MICROCONTROLLER B.E., V Semester (Open Elective) [As per Choice Based Credit System (CBCS) scheme]

	1.5505.02	7 4 3 6 1	20	
Subject Code	15EC563	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of Lecture	40 (08 Hrs/ Module)	Exam Hours	03	
Hours				
	CREDITS – 03			
Course objectives: This course wil	l enable students to:			
• Understandthedifferencebetw embeddedmicrocontrollers.	eenaMicroprocessorandaMicroco	ontroller and		
• Familiarize the basic archited	ture of 8051 microcontroller.			
 Program8051microprocessor 	usingAssemblyLevelLanguagean	dC.		
• Understandtheinterruptsyster	nof8051andtheuseofinterrupts.			
• Understandtheoperationandu	seofinbuiltTimers/CountersandSe	rial port of8051.		
• Interface8051toexternalmem	oryandI/OdevicesusingitsI/Oports	5.		
	Modula 1		DDT	
	Module -1		Loval	
2051 Microsophrollon				
Microprocessor Vs Microcontrol	ler Embedded Systems Embed	Ided Microcontrollers	L1, L2	
8051 Architecture- Registers	Pin diagram I/O ports function	ns Internal Memory		
organization. External Memory (R	OM & RAM) interfacing.	ns, meenar menory		
	Module -2			
8051Instruction Set: Addressing Modes Data Transfer instructions Arithmetic				
instructions Logical instructions Branch instructions Bit manipulation instructions				
Simple Assembly language progra	im examples (without loops) to us	se these instructions.		
	Module -3			
8051 Stack I/O Port Interfacing and Programming: 8051 Stack Stack and Subrouting				
instructions Assembly language	program examples on subroutine	and involving loops -	L1, L2, L3	
Delay subroutine. Factorial of an	1 8 bit number (result maximur	n 8 bit). Block move		
without overlap. Addition of N 8 bit numbers. Picking smallest/largest of N 8 bit				
numbers.	-	•		
Interfacing simple switch and LH	ED to I/O ports to switch on/off	LED with respect to		
switch status.				
Module 4				
8051 Timers and Serial Port: 8051 Timers and Counters –				
I ODEFATIONALIOASSEMDIVIANGUAGEN	ogrammingiogeneraleannise		1.3	

· · · · · · · · · · · · · · · · · · ·		
using Mode-1 and a square wave using Mode-2 on a port pin.		
8051SerialCommunication-BasicsofSerialDataCommunication, RS-232 standard, 9 pin		
RS232 signals, Simple Serial Port programming in Assembly and C to transmit a		
message and to receive dataserially.		
Module -5		
8051 Interrupts and Interfacing Applications: 8051 Interrupts. 8051 Assembly	L1, L2, L3	
language programming to generate an external		
interruptusingaswitch,8051Cprogrammingtogenerateasquare waveform on a port pin		
using a Timerinterrupt.		
Interfacing 8051 to ADC-0804, LCD and Stepper motor and their 8051 Assembly		
language interfacing programming.		
Evaluation of Internal AssessmentMarks:		
It is suggested that at least a few simple programs to be executed by students using	a simulation	
software or an 8051 microcontroller kit for	better	
understandingofthecourse. This activity can be considered for the evaluation of 5 marks out of	of 20 Internal	
assessment marks, reserved for the other activities.		
Course outcomes: At the end of the course, students will be able to:		
• ExplainthedifferencebetweenMicroprocessors&Microcontrollers,		
Architectureof8051Microcontroller, Interfacingof8051toexternal memory and Instruct	ion	
set of 8051.		
• Write8051Assemblylevelprogramsusing8051instructionset.		
• ExplaintheInterruptsystem, operation of Timers/CountersandSerial port of 8051.		
• Write8051Assemblylanguageprogramtogeneratetimingsandwaveforms		
using8051timers.tosend&receiveserialdatausing8051serialportand to generate an external interrup		
using aswitch.	1	
• Write 8051 C programs to generate square wave on 8051 I/O port pin		
usinginterruntandtosend&receiveserialdatausing8051serialport		
 Interfaces imples witches simpled EDs ADC0804 I CDand Stepper Motor to 8051 using 	8051	
 Interfaces impress witches, simple LEDS, ADC0804, LCDand Stepper Wotor to 8051 using I/Oports 	8031	
i/Oports.		
Question paper patient:		
• The question paper will have tenquestions.		
Each full Question consisting of 16marks		
• There will be 2 full questions (with a maximum of Three sub questions) from each me	odule.	
• Eachfullquestionwillhavesubquestionscoveringallthetopicsundera module.		
• The students will have to answer 5 full questions, selecting one full question from each	chmodule	
• The students will have to answer 5 full questions, selecting one full question from each module.		

TEXT BOOKS:

- " The 8051 Microcontroller and Embedded Systems using assembly and C ", Muhammad Ali Mazidi and Janice Gillespie Mazidi andRollin D. McKinlay; PHI, 2006 / Pearson, 2006.
- 2. "The 8051 Microcontroller", Kenneth J. Ayala, 3rd Edition, Thomson/CengageLearning.

REFERENCE BOOKS:

- 1. "The 8051 Microcontroller Based Embedded Systems", Manish K Patel, McGraw Hill, 2014, ISBN:978-93-329-0125-4.
- 2. "Microcontrollers: Architecture, Programming, Interfacing and System Design", Raj Kamal, Pearson Education, 2005.

B.E E&C SEVENTH SEMESTER SYLLABUS

B.E., VII Semester, Electronics &CommunicationEngineering [As per Choice Based Credit System (CBCS) scheme]

Course Code	15EC71	IA Marks	20	
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of LectureHours	50 (10 Hours / Module)	Exam Hours	03	
	CREDITS – 04			
Course objectives: This course will enable students to: • Describe the microwave properties and its transmissionmedia • Describe microwave devices for several applications • Understand the basics of antennatheory • Select antennas for specificapplications				
	Module-1			
Microwave Tubes: Introduction, Reflex Klystron Oscillator, Mechanism of Oscillations, Modes of Oscillations, Mode Curve (Qualitative Analysis only). (Text 1: 9.1, 9.2.2) Microwave Transmission Lines: Microwave Frequencies, Microwave devices, MicrowaveSystems, TransmissionLineequationsandsolutions, ReflectionCoefficient andTransmissionCoefficient, StandingWaveandStandingWaveRatio, SmithChart, SingleStubmatching.(Text2:0.1,0.2,0.3,3.1,3.2,3.3,3.5,3.6ExceptDoublestub matching) L1,L2				
	Module-2			
Microwave Network theory: Symmetrical Z and Y-Parameters for Reciprocal Networks, S matrix representation of Multi-Port Networks. (Text 1: 6.1, 6.2, 6.3) Microwave Passive Devices: Coaxial Connectors and Adapters, Attenuators, Phase Shifters, Waveguide Tees, Magic tees. (Text 1: 6.4.2, 6.4.14, 6.4.15, 6.4.16) L1, L2				
Module-3				
StripLines:Introduction,MicroStriplines,ParallelStriplines,CoplanarStriplines, Shielded Strip Lines. (Text 2: Chapter11) Antenna Basics: Introduction, Basic Antenna Parameters, Patterns, Beam Area, RadiationIntensity,BeamEfficiency,DirectivityandGain,AntennaApertures,Effective Height Bandwidth Radio				

Communication Link, Antenna Field Zones & Polarization. (Text 3: 2.1- 2.11, 2.13,2.15) L1, L2, L3

Module-4
Point Sources and Arrays: Introduction, Point Sources, Power Patterns, Power Theorem, RadiationIntensity, FieldPatterns, PhasePatterns, ArraysofTwoIsotropic Point Sources, Pattern Multiplication, Linear Arrays of n Isotropic Point Sources of equal Amplitude and Spacing. (Text 3: 5.1 – 5.10,5.13) Electric Dipoles: Introduction, Short Electric Dipole, Fields of a Short Dipole (General and Far Field Analyses), Radiation Resistance of a Short Dipole, Thin Linear Antenna (Field Analyses), Radiation Resistances of Lambda/2 Antenna. (Text 3: 6.1 - 6.6) L1, L2, L3, L4
Module-5
LoopendHorn Antenney Introduction Smellloon Comparison of Forfields of Smell
LoopandHornAntenna:Introduction,Smallloop,ComparisonofFarfieldsofSmall LoopandShortDipole,TheLoopAntennaGeneralCase,FarfieldPatternsofCircular Loop Antenna with Uniform Current, Radiation Resistance of Loops, Directivity of Circular Loop Antennas with Uniform Current, Horn antennas Rectangular Horn Antennas.(Text 3: 7.1-7.8, 7.19,7.20) AntennaTypes:HelicalAntenna,HelicalGeometry,PracticalDesignConsiderationsof Helical Antenna, Yagi-Uda array, Parabola General Properties, Log Periodic Antenna. (Text 3: 8.3, 8.5, 8.8, 9.5, 11.7) L1, L2,L3
Course Outcomes: At the end of the course, students will be able to:
 Identify the working of Reflex Klystron by studying the mode curves and also understand transmission lines structure along with its line equations using smiths charts to calculate the reflection coefficient, SWR, input and load impedance
• Solve for Microwave network parameters using S –Matrix also study Passive microwave devices like Connectors, Adapters Attenuators, Tees and phase shifters
• Identify the different types of Strip lines and understand the antenna basics to find various parameters like antenna gain, directivity.
• Classify the point source Isotropic antenna and Electric dipole
• Identify loop, Horn antenna and the Helical antenna by making use of the design considerations
Text Books:
 Microwave Engineering – Annapurna Das, Sisir K Das TMH Publication, 2nd, 2010. Microwave Devices and circuits - Liao, PearsonEducation.
 Antennas and Wave Propagation, John D. Krauss, Ronald J Marhefka and Ahmad S Khan,4thSpecial Indian Edition, McGraw-Hill Education Pvt. Ltd., 2010.
Reference Books:
1. Microwave Engineering – David M Pozar, John Wiley India Pvt. Ltd. 3 rd Edn, 2008.
2. Microwave Engineering–Sushrut Das, Oxford Higher Education, 2 nd Edn, 2015.
3. Antennas and Wave Propagation – Harish and Sachidananda: Oxford University Press, 2007.

Web Link and Video Lectures:

1. https://www.classcentral.com/course/swayam-microwave-theory-and-techniques-14200

2. https://www.udemy.com/course/rf-microwave-radio-transmission-theory-online-course-rahsoft-rahch200/

DIGITAL IMAGE PROCESSING B.E., VII Semester, Electronics &CommunicationEngineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC72	IA Marks	20	
Number of Lecture	04	Exam Marks	80	
Hours/Week				
Total Number of	50 (10 Hours /	Exam Hours	03	
Lecture Hours	Module)			
CREDITS – 04				

Course Objectives: The objectives of this course are to:

- Understand the fundamentals of digital imageprocessing
- Understand the image transform used in digital imageprocessing
- Understandtheimageenhancementtechniquesusedindigitalimageprocessing
- Understand the image restoration techniques and methods used in digital image processing
- UnderstandtheMorphologicalOperationsandSegmentationusedindigitalimage processing

Module-1	RBT Level
DigitalImageFundamentals:WhatisDigitalImageProcessing?,Origins ofDigitalImageProcessing,ExamplesoffieldsthatuseDIP,Fundamental Steps in Digital Image Processing, Components of an Image Processing System, Elements of Visual Perception, Image Sensing and Acquisition, Image Sampling and Quantization, Some Basic Relationships Between Pixels, Linear and NonlinearOperations. [Text: Chapter 1 and Chapter 2: Sections 2.1 to 2.5, 2.6.2]	L1, L2
Module-2	
Spatial Domain: Some Basic Intensity Transformation Functions, Histogram Processing, Fundamentals of Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial Filters FrequencyDomain: Preliminary Concepts, The Discrete Fourier Transform (DFT) of Two Variables, Properties of the 2-D DFT, Filtering in the Frequency Domain, Image Smoothing and Image Sharpening Using Frequency Domain Filters, Selective Filtering. [Text: Chapter 3: Sections 3.2 to 3.6 and Chapter 4: Sections 4.2, 4.5 to 4.10]	L1, L2, L3
Module-3	
Restoration: Noise models, Restoration in the Presence of Noise Only using Spatial Filtering and Frequency Domain Filtering, Linear, Position- Invariant Degradations, Estimating the Degradation Function, Inverse Filtering, Minimum Mean Square Error (Wiener) Filtering, Constrained Least SquaresFiltering. [Text: Chapter 5: Sections 5.2, to 5.9]	L1, L2, L3
Module-4	

Color Image Processing: Color Fundamentals, Color Models, Pseudocolor Image Processing. Wavelets: Background, Multiresolution Expansions.			
Morphological Image Processing: Preliminaries, Erosion and Dilation, Opening and Closing, The Hit-or-Miss Transforms, Some Basic Morphological Algorithms.			
[Text: Chapter 6: Sections 6.1 to 6.3, Chapter 7: Sections 7.1 and 7.2, Chapter 9: Sections 9.1 to 9.5]			
Chapter 9: Sections 9.1 to 9.5]			
Module-5			
Segmentation: Point, Line, and Edge Detection, Thresholding, Region-Based Segmentation, Segmentation Using Morphological Watersheds.	L1, L2, L3		
Representation and Description: Representation, Boundary descriptors. [Text: Chapter 10: Sections 10.2, to 10.5 and Chapter 11: Sections 11.1 and 11.2]			
Course Outcomes: At the end of the course students should be able to:			
 Identify the elements, components, steps, applications, and basic operations in digital image forma processing. 	tion and		
• Utilize basic mathematical operations for (Gray/Colour) image enhancementin spatial domain			
 Model image restoration techniques and make use of morphological operations in image processin Examine application of Fourier Transforms and usualets in imageanhan application and multi-resolution 	g		
 Examine appreation of Fourier Transforms and wavelets in imageemancement and multi-resolution. Distinguish image analysis techniques for image segmentation, representation and description. 	OII		
Question paper pattern:			
• The question paper will have tenquestions.			
 Each full question consists of 16marks. Therewillbe2fullquestions(withamaximumofThreesubquestions)fromeach module. 			
• Eachfullquestion will have subquestions covering all the topic sunder a module.			
Thestudentswillhavetoanswer5fullquestions, selecting one fullquestion from each module.			
Text Book: Digital Image Processing – Refel C Congolar and Richard E. Woods, RIH 2nd Edition 2010			
Digital linage Processing - Kaler C Gonzalez and Kichard E. woods, PHI 5rd Edition 2010.			
Reference Books:			
1. DigitalImageProcessing-S.Jayaraman,S.Esakkirajan,T.Veerakumar,Tata McGraw Hill2014.			
2. Fundamentals of Digital Image Processing-A. K. Jain, Pearson 2004.			
Web Link and Video Lectures:			
1. https://www.coursera.org/courses?languages=en&query=digital%20image%20processing			
2. https://www.classcenu.al.com/course/swayam-digital-image-processing-14005			

POWER ELECTRONICS B.E., VII Semester, Electronics &CommunicationEngineering [As per Choice Based Credit System (CBCS) scheme]

	[As per Choice Based Credit Syste	eni (CBCS) scheniej			
POWERELECTRONICS					
B.E., VII Semester	r, Electronics &Communication E	ngineering [As per Choice	Based		
Credit System (CBCS)Scheme]					
Course Code15EC73IA Marks20					
Number of Lecture	04	Exam Marks	80		
Hours/Week					
Total Number of	50 (10 Hours / Module)	Exam Hours	03		
Lecture Hours					
	CREDITS – 04	L			
Course Objectives: This course w	vill enable students to:				
Understandtheconstructio	nandworkingofvariouspowerdevic	es.			
Studyandanalysisofthyrist	corcircuits with different triggering co	onditions.			
Learntheapplicationsofpor	werdevices incontrolled rectifiers, co	onvertersand inverters.			
Studyofpowerelectronics	circuitsundervariousloadconditions				
	Module-1				
Introduction-ApplicationsofPowe	erElectronics,PowerSemiconductor	rDevices,Control			
CharacteristicsofPowerDevices,t	ypesofPowerElectronicCircuits,Per	ripheralEffects. Power Tra	nsistors: Power BJTs:		
Steady state characteristics. Powe	er MOSFETs: device operation, sw	vitching characteristics, IG	BTs: device operation,		
output andtransfer					
characteristics, di/dt and dv/dt lin	nitations. (Text 1) L1, L2				
	Module-2				
Thyristors - Introduction Princ	iple of Operation of SCR Static	Anode-Cathode Charact	eristics of SCR Two		
transisitor model of SCR. Gate Characteristics of SCR, Turn-ON Methods, Turn-OFF Mechanism, Turn-OFF					
Methods: Natural and Forced Commutation – Class A and Class B types, Gate Trigger Circuit: Resistance Firing					
Circuit, Resistance capacitance firing circuit, UJT Firing Circuit. (Text 2) L1, L2, L3					
Module 3					
VIOUUIC-5 Controllad Pastifiars Introduction Principle of Dhase Controllad Converter Operation Single Dhase Full					
Converter with RL Load Single Phase Dual Converters Single Phase Sami Converter with RL Load					
AC Voltage Controllers - Introd	luction Principles of ON-OFF C	ontrol Principle of Phase	Control Single phase		
controllers with resistive and indu	uctive loads. (Text 1) L1.L2.	ondor, Trincipie officiase	control, single pluse		
L3					
-					
	Module-4		DT 1 1 1 1 0		
DC-DC Converters - Introduction, principle of step-down operation and it's analysis with RL load, principle of					
step-up operation, Step-up converter with a resistive load, Performance parameters, Converter classification,					
1)					
Module-5					
Pulse Width Modulated Inverters- Introduction, principle of operation, performance parameters, Single phase bridge					
inverters, voltage control of single phase inverters, current source inverters, Variable DC-link inverter, Boost					
Inverter, Inverter circuit design.					
Static Switches: Introduction, Sir	igle phase AC switches, DC Switc	nes, Solid state			

relays, Microelectronic relays. (Text 1) L1, L2

Course Outcomes: At the end of the course students should be ableto:

- Identify the basic operation of various power semiconductor devices and their applications.
- Identify the characteristics of SCR and construct commutation and gate triggering circuits for SCR
- Make use of firing circuits model to analyse the AC Voltage controller and rectifier Circuits.
- Analyze applications of Power electronics in Chopper and Static Switching Operation
- Analyze applications of Power electronics for generating PWM in Inverter Circuits.

Evaluation of Internal Assessment Marks:

Itissuggestedthatatleast4experimentsofPowerElectronicstobeconductedbythe students. This activity can be considered for the evaluation of 05 marks out of 20 Internal Assessment (IA) Marks, reserved for the otheractivities.

Text Book s:

- 1. Mohammad H Rashid, Power Electronics, Circuits, Devices and Applications, 3rd/4thEdition, Pearson Education Inc, 2014, ISBN:978-93-325-1844-5.
- 2. M.DSinghandKBKhanchandani,PowerElectronics,2ndEdition,TataMc-Graw Hill, 2009, ISBN: 0070583897

Reference Books:

- 1. L.Umanand, PowerElectronics, Essentials and Applications, John WileyIndia Pvt. Ltd, 2009.
- 2. Dr.P.S.Bimbhra, "PowerElectronics", KhannaPublishers, Delhi, 2012.
- 3. P.C.Sen, "ModernPowerElectronics", SChand&CoNewDelhi, 2005.
- 4. EarlGose,RichardJohnsonbaugh,SteveJost,PatternRecognitionandImage Analysis, ePubeBook.

Web Link and Video Lectures:

1. https://www.coursera.org/learn/power-electronics

2. https://swayam.gov.in/nd1_noc19_ee37/preview

MULTIMEDIA COMMUNICATION

B.E., VII Semester, Electronics & Communication Engineering/ Telecommunication Engineering [As per Choice Based credit System (CBCS) Scheme

Subject Code		15EC741	IA Marks	20
Number of Lecture		03	Exam Marks	80
Hours/Week				
Total Number of	of	40 (08 Hours / Module)	Exam Hours	03
LectureHours				
CREDITS – 03				

Course objectives: This course will enable studentsto:

- Gainfundamentalknowledgeinunderstandingthebasicsofdifferentmultimedia networks and applications.
- Understanddigitizationprincipletechniquesrequiredtoanalyzedifferentmedia types.
- Analyzecompressiontechniquesrequiredtocompresstextandimageandgain knowledge of DMS.
- Analyzecompressiontechniquesrequiredtocompressaudioandvideo.
- Gainfundamentalknowledgeaboutmultimediacommunicationacrossdifferent networks.

Module-1	RBT Level	
Multimedia Communications : Introduction, Multimedia information	L1, L2	
representation, multimedianetworks, multimedia applications, Application and networking		
terminology. (Chap 1 of Text1)		
Module-2	[
Information Papersontation : Introduction Digitization principles Taxt Imagos Audio and Video	1112	
(Chan 2 of Text 1)	L1, L2	
(Chup 2 of Text 1)		
Module-3		
Text and image compression: Introduction, Compression principles, text compression, image	L1, L2, L3	
Compression. (Chap 3 of Text 1)		
Distributed multimedia systems: Introduction, main Features of a DMS, Resource management of		
DMS, Networking, Multimedia operating systems (Chap. 4 - Sections 4.1 to 4.5 of Text 2).		
Module-4		
Audio and video compression: Introduction, Audio compression, video	L1, L2, L3	
compression, videocompressionprinciples, videocompression. (Chap. 4 of Text1).		
Module-5	 	
Multimadia Communication Across Natworks: Deaket audio/video in the network environment		
Video transport across generic networks. Multimedia Transport across ATM Networks (Chap 6		
Sections 61, 62		
6.3 of Text 2).		

Course Outcomes: After studying this course, students will be able to:

- Understand basics of different multimedia networks and applications.
- Understanddifferentcompressiontechniquestocompressaudioandvideo.
- Describe multimedia Communication acrossNetworks.
- Analyse different media types to represent them in digital form.
- Compress different types of text and images using different compression techniques and analyse DMS.

Question pap er pattern:

- The question paper will have tenquestions.
- Each full question consists of 16marks.
- Therewillbe2fullquestions(withamaximumofThreesubquestions)fromeach module.
- $\bullet \quad Each full question will have subquestions covering all the topic sunder a module.$
- Thestudentswillhavetoanswer5fullquestions, selecting one fullquestion from each module.

Text Books:

- 1. FredHalsall, "MultimediaCommunications", Pearsoneducation, 2001ISBN-9788131709948.
- 2. K. R. Rao, Zoran S. Bojkovic, Dragorad A. Milovanovic, "Multimedia CommunicationSystems", Pearsoneducation, 2004.ISBN-9788120321458

BIOMEDICAL SIGNAL PROCESSING B.E., VII Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC742	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (8 Hours /Module)	Exam Hours	03
Lecture Hours			
CREDITS – 03			

Course Objectives: The objectives of this course are to:

- Describetheorigin, properties and suitable models of important biological signals such as ECG and EEG.
- Introducestudentstobasicsignalprocessingtechniquesinanalysingbiological signals.
- Developthestudentsmathematicalandcomputationalskillsrelevanttothefieldof biomedical signalprocessing.
- DevelopathoroughunderstandingonbasicsofECGsignalcompression algorithms.
- Increase the student's awareness of the complexity of various biological phenomena and cultivate an understanding of the promises, challenges of the biomedical engineering.

Module-1			
Introduction to Biomedical Signals: The nature of Biomedical Signals, Examples of Biomedical Signals, Objectives and difficulties in Biomedical analysis. Electrocardiography: Basic electrocardiography, ECG lead systems, ECG signal characteristics. Signal Conversion :Simple signal conversion systems, Conversion requirements for biomedical signals, Signal conversion circuits (Text-1)			
Module-2			
Signal Averaging: Basics of signal averaging, signal averaging as adigital filter, atypical averager, softwareforsignal averaging, limitations of signal averaging. Adaptive Noise Cancelling: Principal noise canceller model, 60- Hzadaptive cancelling using a sine wave model, other applications of adaptive filtering (Text-1)			
Module-3			
Data Compression Techniques: Turning point algorithm, AZTEC algorithm, Fan algorithm, Huffman coding, data reduction algorithmsThe Fourier transform, Correlation, Convolution, Power spectrum estimation, Frequency domain analysis of the ECG(Text-1)			
Module-4			

Cardiological signal processing: Basic Electrocardiography, ECG data acquisition, ECG lead system, ECG signal characteristics (parameters and their estimation), Analog filters, ECG amplifier, and QRS detector, Power spectrum of the ECG, Bandpass filtering techniques, Differentiation techniques, Template matching techniques, A QRS detection algorithm, Realtime ECG processing algorithm, ECG interpretation, ST segment analyzer, Portable arrhythmia monitor. (Text -2)	L1, L3	L2,
Module-5		
Neurological signal processing: The brain and its potentials, The electrophysiological origin of brain waves, The EEG signal and its characteristics (EEG rhythms, waves, and transients), Correlation.	L1, L3	L2,
Analysis of EEG channels: Detection of EEG rhythms, Template matching for EEG, spike and wave detection(Text-2).		
 Possessthebasicmathematical, scientificand computational skills necessary to analyse ECG and E Applyclassical and modern filtering and compression techniques for ECG and EEG signals Developathorough understanding on basics of ECG and EEG feature extraction. 	EGsig	nals.
 Question paper pattern: The question paper will have tenquestions. Each full question consists of 16marks. Therewillbe2fullquestions(withamaximumofThreesubquestions)fromeach module. Eachfullquestionwillhavesubquestionscoveringallthetopicsunderamodule. Thestudentswillhavetoanswer5fullquestions, selecting onefullquestion from each module. 		
 Text Books: 1. Biomedical Digital Signal Processing- Willis J. Tompkins, PHI2001. 2. Biomedical Signal Processing Principles and Techniques- D C Reddy, McGraw- Hill publication 	\$2005	
Reference Book : Biomedical Signal Analysis- Rangaraj M. Rangayyan, John Wiley & Sons 2002		

<u>REAL TIME SYSTEMS</u> B.E., VII Semester, Electronics &CommunicationEngineering /Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC743	IA Marks	20
Number of Lecture	03	Exam marks	80
Hours/Week			
Total Number of	40 (08 Hours per Module)	Exam Hours	03
Lecture Hours	Credite 02		
	Credits – 03		
Course Objectives: This Co	Surse will enable students to:	lassifiantiana	
 Discussifientstorio Describe the conc 	carbackgroundorRear-timesystems and the	assilications.	
 Describe the conc Discussibility 	astodayalopsoftwareforPaal TimeAppli	entions	
 Explain the concer 	gestode velopsoft wareror Kear-ThicAppin tsofoperating system and RTS development	tmethodologies	
Explaintileconcep	Assorsperutingsystematicity is development	inicial of official	
	Modules		RBT
	in oddies		Level
Module-1			
Introduction to Real -Tin	me Systems: Historical background, Elen	nents of a Computer Control System,	
RTS- Definition, Classifica	ation of Real-time Systems, Time Constrai	ints, Classification of Programs.	
Concepts of Computer C	ontrol: Introduction, Sequence Control,	Loop Control, Supervisory Control,	
Centralized Computer Co	ntrol, Hierarchical Systems. (Text Book:	1.1 to 1.6 and 2.1 to 2.6)	L1, L2
Module-2			
Computer Hardware Red	quirements for Real -Time Applicat	tions: Introduction, General Purpose	
Computer, Single Chip N	Aicrocomputers and Microcontrollers, Spe	ecialized Processors, Process-Related	
Interfaces, Data Transfer T	echniques, Communications, Standard Inter	rface.(Text Book: 3.1 to 3.8)	L1, L2
Module-3			
Languages for Real-Tin	ne Applications: Introduction, Syntax I	Layout and Readability, Declaration	
and Initialization of Var	iables and Constants, Modularity and	Variables, Compilation of Modular	
Programs, Data types, Control Structures, Exception Handling, Low-level facilities, Co-routines,			
(Text Book: 5.1 to 5.14)			L1, L2, L3
(Text Dook: 5.1 (05.14)			
Module-4			
Operating Systems: Intr	oduction, Real-Time Multi-Tasking O	NS, Scheduling Strategies, Priority	
Management Code Shar	ring Resource Control Task Co-Oper	ation and Communication Mutual	
Exclusion.(Text	ing, resource control, rusk co-open	and communication, mutual	L1, L2
Book: 6.1 to 6.11)			

Module-5	
Design of RTS –General Introduction: Introduction, Specification Document, Preliminary Design, Single-Program Approach, Foreground/BackgroundSystem. RTS Development Methodologies:Introduction, Yourdon Methodology, Ward and Mellor Method, Hately and Pirbhai Method. (Text Book: 7.1 to 7.5 and 8.1, 8.2, 8.4,8.5)	L1, L2, L3
Course Outcomes: At the end of the course, students should be able to:	
• UnderstandthefundamentalsofRealtimesystemsanditsclassifications.	
• Understandtheconceptsofcomputercontrol,operatingsystemandthesuitable computer hardware requirements for real-timeapplications.	
• Develop the software languages to meet Real timeapplications.	
• ApplysuitablemethodologiestodesignanddevelopReal-TimeSystems.	
 Question Paper Pattern: The question paper will have tenquestions. Each full Question consisting of 16marks There will be 2 full questions (with a maximum of Three sub questions) from eachmodule. 	
 Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from eachmodule. 	
Text Book :	
Real-Time Computer Control, by Stuart Bennet, 2nd Edn. Pearson Education. 2008.	
 Reference Books: 1. C.M.Krishna,KangG.Shin,"Real–TimeSystems",McGraw–HillInternational Editions,1997. 2. Real-TimeSystemsDesignandAnalysis,Phillip.A.Laplante,secondedition, PHI,2005. 3. EmbeddedSystems,RajKamal,TataMcGrawHill,India,thirdedition,2005. 	

<u>Cryptography</u> B.E., VII Semester, Electronics &CommunicationEngineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC744	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (08 Hours /	Exam Hours	03
Lecture Hours	Module)		
CREDITS - 03			

Course Objectives: This Course will enable students to:

- Enablestudentstounderstandthebasicsofsymmetrickeyandpublickey cryptography.
- Equipstudentswithsomebasicmathematicalconceptsandpseudorandom number generators required forcryptography.
- Enable students to authenticate and protect the encrypteddata.
- Enrich knowledge about Email, IP and Websecurity.

Modules	
Module-1	RBT Level
Basic Concepts of Number Theory and Finite Fields: Divisibility and the divisibility algorithm, Euclidean algorithm, Modular arithmetic, Groups, Rings and Fields, Finite fields of the	L1, L2
form $GF(p)$, Polynomial arithmetic, Finite fields of the form $GF(2^n)$ (Text 1: Chapter3)	
Module-2	
Classical Encryption Techniques: Symmetric cipher model, Substitution techniques, Transposition techniques, Steganography (Text 1: Chapter 1) SYMMETRIC CIPHERS: Traditional Block Cipher structure, Data Encryption Standard (DES) (Text 1: Chapter 2: Section1, 2)	L1, L2
Module-3	
 SYMMETRIC CIPHERS: The AES Cipher. (Text 1: Chapter 4: Section 2, 3, 4) Pseudo-Random-Sequence Generators and Stream Ciphers: Linear Congruential Generators, Linear Feedback Shift Registers, Design and analysis of stream ciphers, Stream ciphers using LFSRs (Text 2: Chapter 16: Section 1, 2, 3, 4) 	L1, L2, L3
Module-4	
More number theory : Prime Numbers, Fermat's and Euler's theorem, Primality testing, Chinese Remainder theorem, discrete logarithm. (Text 1: Chapter 7) Principles of Public-Key Cryptosystems : The RSA algorithm, Diffie - Hellman Key Exchange, Elliptic Curve Arithmetic, Elliptic Curve Cryptography (Text 1: Chapter 8, Chapter 9: Section 1, 3,4)	L1, L2, L3
Module-5	

One-Way Hash Functions: Background, Snefru, N-Hash, MD4,MD5, Secure Hash Algorithm [SHA],One way hash functions using symmetric block algorithms, Using public key algorithms, Choosing a one-way hash functions, Message Authentication Codes. Digital Signature Algorithm, Discrete Logarithm Signature Scheme (Text 2: Chapter 18: Section 18.1 to 18.5, 18.7, 18.11 to 18.14 and Chapter 20: Section 20.1,20.4)	L3		
Course Outcomes: After studying this course, students will be able to:			
• Explain the fundamental concepts, principles and theories of cryptography.			
 Make use of the concepts of generating pseudo random numbers required for cryptographic applications. Utilize the various concepts of number theory in cryptography. 			
• Discover the prominent techniques used for public-key cryptosystems and digital signature schemes.			
• Assess one way hash functions for data encryption.			
Question paper pattern:			
• Thequestionpaper will have 10 full questions carrying equal marks.			
• Eachfullquestionconsistsof16markswithamaximumofThreesubquestions.			
• Therewillbe2fullquestionsfromeachmodulecoveringallthetopicsofthe module			
• Thestudentswillhavetoanswer5fullquestions, selecting one fullquestion from each module.			
Text Books :			
 William Stallings, "Cryptography and Network Security Principles and Practice", Pearson Education Inc., 6thEdition, 2014, ISBN:978-93-325-1877-3 			
 Bruce Schneier, "Applied Cryptography Protocols, Algorithms, and Source code in C", Wiley Publications, 2ndEdition, ISBN:9971-51-348-X 			

Reference Books :

- CryptographyandNetworkSecurity,BehrouzA.Forouzan,TMH,2007.
 Cryptography and Network Security, AtulKahate, TMH,2003.

CAD for VLSI

B.E., VII Semester, Electronics &CommunicationEngineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC745	IA Marks	20	
Number ofLecture	03	Exam	80	
Hours/Week		marks		
Total Number of	40	Exam	03	
Lecture Hours	(8 Hours per Module)	Hours		
	CREDITS – 03			
Course Objectives: This	course will enable students to:			
• Understandvario	usstages of Physical design of VLSI circ	cuits		
 Knowaboutmapp 	ingadesignproblemtoarealizablealgo	orithm		
 Becomeawareofg 	graphtheoretic, heuristic and genetical	gorithms		
• Compare perform	nance of differentalgorithms			
	Modules			RBT
				Level
Module 1				
Data Structures and Basic	Algorithms:			L1, L2
Basic terminology, Con	nplexity issues and NP-Hardness.	Examples - E	xponential,	
heuristic, approximation	and special cases. Basic Algorithm	ns. Graph Algo	orithms for	
Search, spanning tree, sh	ortest path, min-cut and max-cut, S	teiner tree. Cor	nputational	
Geometry Algorithms: L	ine sweep and extended			
line sweep methods.				
Module 2				
Basic Data Structures. A	Atomic operations for layout editors,	Linked list of b	olocks, Bin-	L1, L2
based method, Neighbor	pointers, corner-stitching, Multi-layer	operations, Lin	nitations of	
existing data structures. L	ayout specificationlanguages.			
Graph algorithms for	nhysical design : Classes of gr	onhe in physic	al design	
Relationship between gr	and classes Grand problems in ph	vsical design	Algorithms	
for Interval graphs.	uph clusses, Gruph problems in ph	ystear aesign, .	ingoriumis	
permutation graphs and c	ricle graphs.			
permutation graphs and encie graphs.				
Module 3				
Partitioning: Problem the Classification of Partition	formulation, Design style specifi ning Algorithms.	c partitioning	problems,	L1, L2,L3
Group migration algorithms: Kernighan-Lin algorithm, Fiduccia- MattheysesAlgorithm,SimulatedAnnealing,SimulatedEvolution.				
Floor Planning: Problem formulation, Constraint based floor planning, Rectangular dualization, Simulated evolution algorithms.				

Module 4			
Pin Assignment : Problem formulation. Classification of pin assignment problems, General pin assignment problem.	L1,L2,L3		
Placement: Problem formulation, Classification of placement algorithms. Simulation based placement: Simulated annealing, simulated evolution, force directed placement. Partitioning based algorithms: Breur's Algorithm, Terminal propagation algorithm, Other algorithms for placement.			
Module 5			
Global Routing: Problem formulation, Classification of Global routing algorithms, Maze routing algorithms: Lee's algorithm, Soukup's algorithm and Hadlock's Algorithm, Line probe algorithms.	L1,L2,L3		
Detailed Routing: Problem formulation, Routing considerations, models, channel routing and switch box routing problems. General river routing problem, Single row routing problem.			
Two-layer channel routing algorithms: Basic Left EdgeAlgorithm, Dogleg router, Symbolic router-YACR2.			
Course Outcomes: After studying this course, students will be able to:			
Appreciate the problems related to physical design of VLSI			
• UsegenralizedgraphtheoreticapproachtoVLSIproblems			
 Design Simulated Annealing and Evolutionaryalgorithms 			
• Know various approaches to write generalized algorithms			
Question paper pattern:			
• Thequestionpaper will have 10 full questions carrying equal marks.			
• Eachfullquestionconsistsof16markswithamaximumofThreesub questions.			
• Therewillbe2fullquestionsfromeachmodulecoveringallthetopics of themodule			
• Thestudentswillhavetoanswer5fullquestions, selecting one full question from each module.			

Text Book :

Algorithms for VLSI Physical Design Automation, 3rdEd, NaveedSherwani, 1999 Kluwer Academic Publishers, Reprint 2009 Springer (India) Private Ltd. ISBN 978-81-8128-317-7.

Reference Book :

Raifsteinmetz,KlaraNahrstedt,"Multimedia:Computing,Communicationsand Applications", Pearson education, 2002. ISBN-9788177584417

DSP Algorithms and Architecture B.E., VII Semester, Electronics &CommunicationEngineering /Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC751	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/WeekTotalNumberOfLecture Hours	40 (8 Hours /Module)	Exam Hours	03	
	CREDIT	$\Gamma S - 03$		
 Course Objectives: This course will enable students to: Figureouttheknowledgeandconceptsofdigitalsignalprocessingtechniques. UnderstandthecomputationalbuildingblocksofDSPprocessorsanditsspeed issues. Understand the various addressing modes, peripherals, interrupts and pipelining structure of TMS320C54xxprocessor. Learn how to interface the external devices to TMS320C54xx processor in variousmodes. Understand basic DSP algorithms with theirimplementation. 				pts and
	Module-1			RBT Level
Introduction to Digital SignalProcessing: Introduction,ADigitalSignal–ProcessingSystem,TheSamplingProcess, Discrete Time Sequences, Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), Linear Time-Invariant Systems, Digital Filters, Decimation andInterpolation. Computational Accuracy in DSP Implementations: Number Formats for Signals and Coefficients in DSP Systems, Dynamic Range and Precision, Sources of Error in DSP Implementation.				L1, L2
	Module-2			
Architectures for Programmable Digital Signal – Processing Devices: Introduction, Basic Architectural Features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, AddressGenerationUnit,ProgrammabilityandProgramExecution,Speed Issues, Features for ExternalInterfacing.				L1, L2, L3
Module-3				
Programmable Digital Signal Processors: Introduction, Commercial Digital Signal-processing Devices, Data Addressing Modes of TMS32OC54XX, Memory Space of TMS32OC54xx Processors, Program Control. Detail Study of TMS320C54X & 54xx Instructions and Programming, On – Chip Peripherals, Interrupts of TMS32OC54XX Processors, Pipeline Operation ofTMS32OC54xx Processor.			L1, L2, L3	
Module-4				
Implementation of Basic DSPAlgorithms: Introduction, The Q – notation, FIR Filters, IIR Filters, Interpolation and Decimation Filters (one	L1, L2, L3			
---	------------			
example in each case).				
Implementation of FFT Algorithms: Introduction, An FFT Algorithm for DFT Computation, Overflow and Scaling, Bit – Reversed Index. Generation & Implementation on the TMS32OC54xx.				
Madula 5				
InterfacingMemory and Parallel I/O Peripherals to Programmable DSPDevices:	111213			
Introduction, Memory Space Organization, External Bus Interfacing Signals. Memory Interface, Parallel I/O Interface, Programmed I/O, Interrupts and I/O Direct Memory Access (DMA).	11, 12, 13			
Interfacing and Applications of DSP Processors:				
Introduction, Synchronous Serial Interface, A CODEC Interface Circuit, DSPBasedBio- telemetryReceiver,ASpeechProcessingSystem,AnImage ProcessingSystem.				
Course Outcomes: At the end of this course, students would be able to				
• Comprehend the knowledge and concepts of digital signal processing techniques.				
• Apply the knowledge of DSP computational building blocks to achieve speed in DSP architecture orprocessor.				
• Apply knowledge of various types of addressing modes, interrupts, peripheralsandpipeliningstructureofTMS320C54xxprocessor.				
• Develop basic DSP algorithms using DSPprocessors.				
• Discussaboutsynchronousserialinterfaceandmultichannelbuffered serial port (McBSP) of DSPdevice.				
• Demonstrate the programming of CODECinterfacing.				
Question paper pattern:				
• Thequestionpaper willhave 10 full questions carrying equal marks.				
• Eachfullquestionconsists of 16marks with a maximum of Three subquestions.				
 Inerewillbe2fullquestionsfromeachmodulecoveringallthetopicsofthe module Thestudentswillbayetoanswer5fullquestions selectingonefullquestionfrom eachmodule 				
Text Book:				
"Digital Signal Processing", Avatar Singh and S. Srinivasan, Thomson Learning, 2004.				
Reference Books:				
1. "DigitalSignalProcessing:Apracticalapproach",IfeachorE.C.,JervisB.W Pearson-Education, PHI,2002.				
2. "DigitalSignalProcessors",BVenkataramaniandMBhaskar,TMH,2nd,2010 3. "ArchitecturesforDigitalSignalProcessing" PeterPirschJohnWeily 2008				

IoT& WIRELESS SENSOR NETWORKS B.E., VII Semester, Electronics &CommunicationEngineering /Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC752	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours /Module)	Exam Hours	03	
LectureHours				
	CREE	DITS – 03		
Course Objectives: This cou	urse will enable students to:			
• Understandvariouss	ourcesofIoT&M2Mcommun	icationprotocols.		
Describe Cloud con	nputing and design principles	ofIoT.		
BecomeawareofMQ	Tclients,MQTTserverandit	sprogramming.		
• Understand the arch	nitecture and design principle	s ofWSNs.		
Enrichtheknowledg	eaboutMACandroutingproto	colsin WSNs.		
	N 11 1			DDT L anal
	Module-1			KB1 Level
Overview of Internet of Th	nings: IoT Conceptual Frame	work, IoT Architectura	l View, Technology	L1, L2
IoT/M2M Systems data enrichment data consolidation and device management at IoT/M2M				
Gateway, web communication protocols used by connected IoT/M2M devices. Message				
communication protocols (CoAP-SMS, CoAP- MQ, MQTT, XMPP) for IoT/M2M devices.				
	Module-2			
Architectureand Desig	n Principles for Io	T: Internet conn	ectivity Internet-	1112
basedcommunication,IPv4.	IPv6,6LoWPANprotocol,IPA	Addressing in the IoT	, Application layer	L1, L2
protocols: HTTP, HTTPS,	FTP, TELNET and ports.	U		
Data Collection, Storage and	Computing using a Cloud Pl	atform: Introduction, Cle	oud computing	
collection storage and com	, storage and computing, Clou	a service models, 101 Cl	oud- based data	
concerton, storage and comp	seeing services using rannons.			
	Module-3			

Prototyping and Designing Software for IoT Applications: Introduction, Prototyping Embedded device software, Programming Embedded Device Arduino Platform using IDE, Reading data from sensors and devices, Devices, Gateways, Internet and Web/Cloud services software development. ProgrammingMQTTclientsandMQTTserver.IntroductiontoIoTprivacy andsecurity.Vulnerabilities,securityrequirementsandthreatanalysis, IoT Security Tomography and layered attackermodel.	L1, L2, L3
Module-4	
Overview of Wireless Sensor Networks: Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks. Architectures: Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture-Sensor Network Scenarios, Optimization Goals and Figures of Merit, Design principles for WSNs, Service interfaces of WSNs Gateway Concepts.	L1, L2, L3
Module-5	
Communication Protocols : Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts - S-MAC, The Mediation Device Protocol, Wakeup Radio Concepts, Contention based protocols(CSMA,PAMAS), Schedule based protocols (LEACH, SMACS, TRAMA) Address and Name Management in WSNs, Assignment of MAC Addresses, Routing Protocols-Energy-Efficient Routing,GeographicRouting,Hierarchicalnetworksbyclustering.	L1, L2, L3
 Course Outcomes: At the end of the course, students will be able to: Describe the OSI Model for the IoT/M2MSystems. Understand the architecture and design principles forIoT. Learn the programming for IoTApplications. IdentifythecommunicationprotocolswhichbestsuitstheWSNs. 	
 Question paper pattern: The question paper will have tenquestions. Each full Question consisting of 16marks. There will be 2 full questions (with a maximum of Three sub questions) fromeach module. Eachfullquestion willhave subquestions covering all the topics under amodule. The students will have to answer 5 full questions, selecting one full question from each module. 	

Text Books:

- 1. Raj Kamal, "Internet of Things-Architecture and design principles", McGraw Hill Education.
- 2. Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005.
- 3. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.

Reference Books:

- 1. KazemSohraby, Daniel Minoli, &TaiebZnati, "Wireless Sensor Networks- Technology, Protocols, And Applications", John Wiley, 2007.
- 2. AnnaHac, "WirelessSensorNetworkDesigns", JohnWiley, 2003.

PATTERN RECOGNITION

B.E., VII Semester, Electronics & Communication Engineering/ Telecommunication

Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC753	IA Marks	20
Number of Lecture	03	Exam Marks	80
Hours/Week			
Total Number of	40 (8 Hours /Module)	Exam Hours	03
Lecture Hours			
CREDITS – 03			
Course Objectives: The objectives of this course are to:			

Course Objectives: The objectives of this course are to:

- Introduce mathematical tools needed for PatternRecognition
- Impart knowledge about the fundamentals of PatternRecognition.
- Provideknowledgeofrecognition, decision making and statistical learning problems
- Introduceparametricandnon-parametrictechniques, supervised learning and clustering concepts of pattern recognition

Modules	
Module-1	RBT Level
Introduction: Importance of pattern recognition, Features, Feature Vectors, and Classifiers, Supervised, Unsupervised, and Semi-supervised learning, Introduction to Bayes Decision Theory, Discriminant Functions and Decision Surfaces, Gaussian PDF and Bayesian Classification for Normal Distributions.	L1, L2
Module-2	
Data Transformation and Dimensionality Reduction: Introduction, Basis Vectors, The KarhunenLoeve (KL) Transformation, Singular Value Decomposition, Independent Component Analysis (Introductiononly). Nonlinear Dimensionality Reduction, Kernel PCA.	L1, L2
Module-3	
Estimationof Unknown ProbabilityDensity Functions: Maximum Likelihood Parameter Estimation, Maximum a Posteriori Probability estimation, Bayesian Interference, Maximum Entropy Estimation, Mixture Models, Naive-Bayes Classifier, The Nearest Neighbor Rule.	L1, L2, L3
Module-4	
Linear Classifiers: Introduction, Linear Discriminant Functions and Decision Hyperplanes, The Perceptron Algorithm, Mean Square Error Estimate, Stochastic Approximation of LMS Algorithm, Sum of Error Estimate.	L1, L2, L3
Module-5	
NonlinearClassifiers:TheXORProblem,ThetwoLayerPerceptron,Three Layer Perceptron, Back propagation Algorithm, Basic Concepts of Clustering, Introduction to Clustering, ProximityMeasures.	L1, L2, L3

Course outcomes: At the end of the course, students will be ableto:

- IdentifyareaswherePatternRecognitionandMachineLearningcanoffera solution.
- Describethestrengthandlimitationsofsometechniquesusedincomputational MachineLearningforclassification,regressionanddensityestimationproblems
- $\bullet \quad Describe genetical gorithms, validation methods and sampling techniques$
- Describeandmodeldatatosolveproblemsinregressionandclassification
- Implement learning algorithms for supervisedtasks

Question paper pattern:

The question paper will have ten questions.

- Each full question consists of 16marks.
- Therewillbe2fullquestions(withamaximumofThreesubquestions)from eachmodule.
- Each full question will have sub questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Book:

Pattern Recognition :SergiosTheodoridis, Konstantinos Koutroumbas, Elsevier India Pvt. Ltd (Paper Back), 4th edition.

Reference Books:

- 1. TheElementsofStatisticalLearning:TrevorHastie,Springer-VerlagNew York, LLC (Paper Back),2009.
- 2. PatternClassification:RichardO.Duda,PeterE.Hart,DavidG.Stork. John Wiley & Sons,2012.
- 3. PatternRecognitionandImageAnalysisEarlGose:Richard

Johnsonbaugh, SteveJost, ePubeBook

ADVANCED COMPUTER ARCHITECTURE B.E., VII Semester, Electronics &CommunicationEngineering /Telecommunication Engineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC754	IA Marks	20	
Number of Lecture	03	Exam Marks	80	
Hours/Week				
Total Number of	40 (8 Hours /Module)	Exam Hours	03	
Lecture Hours	Lecture Hours			
	CREDIT	$\Gamma S - 03$		
Course Objectives: This cou	arse will enable students to:			
• Understandthevario	usparallelcomputermodelsandc	conditionsofparallelism	1	
• Explain the control	flow, dataflow and demand dri	venmachines		
• StudyCISC,RISC,su	iperscalar, VLIW and multiproce	essorarchitectures		
• Understandtheconce	eptotpipeliningandmemoryhier	archydesign		
• Explain cache coher	renceprotocols.			
	Module-1			RBT Level
Parallel Computer Mode	els: The state of computing	, Classification of p	arallel computers,	L1, L2
Multiprocessors and multic	computer, Multivectorsand SIM	ID computers.	Duri	
Hardware and software par	allelism Program partitioning	and scheduling Grain	Size and latency	
Thate ware and software par	anensin, i rogram partitoning	and seneduning, Orani	Size and fatency.	
Module-2				
Program flow mechanisms: Control flow versus data flow, Data flow Architecture, Demand			nitecture, Demand	L1, L2, L3
driven mechanisms, Comparisons of flow mechanisms.				
Principles of Scalable Per	formance : Performance Met	rics and Measures, I	Parallel Processing	
Applications, Speedup Perl	formance Laws, Scalability Ana	alysis and Approaches		
	Module-3			
Speedup Performance Law	s: Amdhal's law, Gustafson's	law, Memory bounde	d speed up model,	L1. L2. L3
Scalability Analysis and Ap	pproaches.	•	1 1	,,
Advanced Processors: Adv	anced processor technology, In	struction-set Architec	tures, CISC Scalar	
Processors, RISC Scalar Pr	ocessors, Superscalar Processo	ors, VLIW Architectur	es.	
	Module-4			
Pipelining: Linear pipeline	e processor, nonlinear pipeline	processor, Instruction	n pipeline Design,	L1. L2. L3
Mechanisms for instructi	on pipelining, Dynamic inst	truction scheduling,	Branch Handling	, ,
techniques, branch predicti	on, Arithmetic Pipeline Design			
Memory Hierarchy Design	n: Cache basics & cache perf	tormance, reducing n	niss rate and miss	
penany, multilevel cache h	ierarchies, main memory organ	nzations, design of me	mory merarchies.	

	1
Module-5	
Multiprocessor Architectures: Symmetric shared memory architectures, distributed shared memory architectures, models of memoryconsistency, cachecoherenceprotocols(MSI,MESI,MOESI),scalablecachecoherence, overview of directory based approaches, design challenges of directory protocols, memory based directory protocols, cache based directory protocols.	L1, L2, L3
Course Outcomes: At the end of the course, the students will be able to:	
• Explain parallel computer models and conditions of parallelism	
• Differentiate control flow, dataflow, demand drivenmechanisms	
• Explain the principle of scalableperformance	
• Discuss advanced processors architectures like CISC, RISC, superscalar and VLIW	
• Understand the basics of instruction pipelining and memorytechnologies	
• Explain the issues in multiprocessorarchitectures	
Question paper pattern: The question paper will have ten questions	
 Each full question consists of 16marks. 	
• Therewillbe2fullquestions(withamaximumofThreesubquestions)fromeach module.	
• Eachfullquestion will have subquestions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.	
Text Book: Kai Hwang, "Advanced computer architecture"; TMH.	
 Reference Books: 1. KaiHwangandZu, "ScalableParallelComputersArchitecture"; MGH. 2. M.JFlynn, "ComputerArchitecture, PipelinedandParallelProcessorDesign"; NarosaPublishing 3. D.A.Patterson, J.L.Hennessy, "ComputerArchitecture: Aquantitative approach"; Morgan Kauff Feb, 2002. 	fmann

SATELLITE COMMUNICATION B.E., VII Semester, Electronics &CommunicationEngineering [As per Choice Based Credit System (CBCS)]

Subject Code	15EC755	IA Marks	20	
Number of Lecture Hours/Week	03	Exam Marks	80	
Total Number of Lecture Hours	40 (8 Hours /Module)	Exam Hours	03	
	CREDI	TS – 03	I	
Course Objectives: This cour	se will enable students to			
• Understand the basic pr	inciple of satellite orbits andtra	ajectories.		
Studyofelectronicsystem	nsassociatedwithasatelliteandtl	neearthstation.		
• Understandthevariouste	chnologiesassociatedwiththesa	tellitecommunication	1.	
Focusonacommunicatio	nsatelliteandthenationalsatellit	esystem.		
• Studyofsatelliteapplicat andnavigation.	ionsfocusingvariousdomainsse	ervicessuchasremote s	sensing, weather foreca	sting
	Module-1			RBT Level
Satellite Orbits and Traject	ories Definition Basic Princi	nles Orbital naramet	ers Injection velocity	L1 L2
and satellite trajectory, Types of Satellite orbits, Orbital perturbations, Satellite stabilization, Orbital effects on satellite's performance, Eclipses, Look angles: Azimuth angle, Elevation angle.				
C. (.11)	Module-2		T-11	
command subsystem, Payload.			L1, L2	
Earth Station: Types of earth station, Architecture, Design considerations, Testing, Earth station Hardware, Satellite tracking.				
	Module-3			
Multiple Access Techniques TDMA, CDMA, SDMA.	: Introduction, FDMA (No deri	vation), SCPC System	ns, MCPC Systems,	L1, L2, L3
Satellite Link Design Fundamentals : Transmission Equation, Satellite Link Parameters, Propagationconsiderations.				
Module-4				
Communication Satellites: Vs. Terrestrial Networks, S Systems, National Satellite	Introduction, Related Applicat Satellite Telephony, Satellite T Systems.	tions, Frequency Ban elevision, Satellite ra	ds, Payloads, Satellite dio, Regional satellite	L1, L2
	Module-5			

Remote Sensing Satellites : Classification of remote sensingsystems, orbits, Payloads, Types of	L1, L2, L3
images: Image Classification Interpretation Applications	, ,
mages. mage classification, interpretation, Appretations.	
Weather Forecasting Satellites: Fundamentals, Images, Orbits, Payloads, Applications,	
i canto i constitui successi i anaminentario, inageo, cicito, i ajionas, rippirentono,	
Navigation Satellites : Development of Satellite Navigation Systems, GPS system, Applications.	

Course Outcomes: At the end of the course, the students will be ableto:

- Identify the various applications of satellite orbits and its trajectories and subsystem parameters associated with it.
- Utilize the electronic hardware requirements associated with thesatellite subsystem and earth station.
- Make use of the satellite link parameters under various propagation conditions and applications with the different multiple accesstechniques.
- Develop the knowledge of communication satellite and focus onnational satellite system.
- Distinguish applications of satellite in different domains such asremote sensing, weather forecasting and navigation.

Question Paper pattern:

- The Question paper will have tenquestions.
- Each full Question consisting of 16marks
- Therewillbe2fullQuestions(withamaximumofThreesubquestions)fromeach module.
- $\bullet \quad Each full question will have subquestions covering all the topics under a module.$
- The Students will have to answer 5 full Questions, selecting one full Question from each module.

Text Book:

AnilK.Maini,VarshaAgrawal,SatelliteCommunications,WileyIndiaPvt.Ltd., 2015, ISBN:978-81-265-2071-8.

Reference Books :

- 1. Dennis Roddy, Satellite Communications, 4thEdition, McGraw-Hill International edition, 2006
- 2. Timothy Pratt, Charles Bostian, Jeremy Allnutt, Satellite Communications, 2ndEdition, Wiley India Pvt. Ltd , 2017, ISBN:978-81-265-0833-4

ADVANCED COMMUNICATION LAB

B.E., VII Semester, Electronics &CommunicationEngineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code	15ECL76	IA Marks	20	
Number of Lecture Hours/Week	01Hr Tutorial(Instructions) + 02 Hours Laboratory = 03	Exam Marks	80	
RBT Levels	L1, L2, L3	Exam Hours	03	
	CREDITS – 02			
Course objectives: This course will enable students to:				
• Design and demonstrate the digital modulation techniques				
Demonstrateandmeasurethewavepropagationinmicrostripantennas				

- Characteristicsofmicrostripdevicesandmeasurementofitsparameters.
- Modelanopticalcommunicationsystemandstudyitscharacteristics.
- Simulatethedigitalcommunicationconceptsandcomputeanddisplayvarious parameters along withplots/figures.

Laboratory Experiments

PART-A: Following Experiments No. 1 to 4 has to be performed using discrete components.

- 1. TimeDivisionMultiplexingandDemultiplexingoftwobandlimitedsignals.
- 2. ASKgenerationanddetection
- 3. FSKgenerationanddetection
- 4. PSKgenerationanddetection
- 5. Measurement of frequency, guide wavelength, power, VSWR and attenuation in microwave testbench.
- 6. MeasurementofdirectivityandgainofmicrostripdipoleandYagiantennas.
- 7. Determination of
 - a. Couplingandisolationcharacteristicsofmicrostripdirectionalcoupler.
 - b. Resonance characteristics of microstrip ring resonator and computation of dielectric constant of thesubstrate.
 - c. Power division and isolation of microstrip powerdivider.
- 8. Measurement of propagation loss, bending loss and numerical aperture of an optical fiber.

PART-B: Simulation Experiments using SCILAB/MATLAB/Simulink or LabView

- 1. Simulate NRZ, RZ, half-sinusoid and raised cosine pulses and generate eye diagram for binary polarsignaling.
- 2. Simulate the Pulse code modulation and demodulation system and display the waveforms.
- 3. SimulatetheQPSKtransmitterandreceiver.Plotthesignalsanditsconstellation diagram.
- 4. Test the performance of a binary differential phase shift keying system by simulating the non-coherent detection of binaryDPSK.

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Make use of the characteristics and response of microwave devices
- Utilize the characteristics of micros trip antennas and measurement of its parameters.
- Construct the digital modulation schemes with the display of waveforms and computation of performance parameters
- Make use of the characteristics of Optical Fibre Communication and calculate the parameters associated with it.
- Model different digital communication concepts using simulation

Conduct of Practical Examination:

• Allaboratory experiments are to be considered for practical

examination.

- For examination one question from PART-A and one question from PART-B or only onequestionfromPART-Bexperimentsbasedonthecomplexity,tobeset.
- Students are allowed to pick one experiment from thelot.
- Strictlyfollowtheinstructionsasprintedonthecoverpageofanswerscriptfor breakup ofmarks.
- ChangeofexperimentisallowedonlyonceandMarksallottedtotheprocedurepart to be madezero.

VLSI LAB

B.E., VII Semester, Electronics &CommunicationEngineering [As per Choice Based Credit System (CBCS) scheme]

Subject Code		15ECL77	IA Marks	20
Number of Leo	cture	01Hr Tutorial(Instructions)	Exam Marks	80
Hours/Week		+ 02 Hours Laboratory $= 03$		
RBT Levels		L1, L2, L3	Exam Hours	03
		CREDITS – 02		
Course objectiv	es: This cou	rse will enable students to:		
 Explore 	theCADtoo	landunderstandtheflowoftheFullCustomIC	Cdesigncycle.	
• Learn E	RC, LVS a	nd Parasitic Extraction of the variousdesi	gns.	
 Designation 	andsimulate	thevariousbasicCMOSanalogcircuitsandu	setheminhigher circuits like da	ta converters
using de	esign abstra	ctionconcepts.		
 Designation 	indsimulate	thevariousbasicCMOSdigitalcircuitsandus	setheminhigher	
circuits	likeaddersar	idshiftregistersusingdesignabstractioncon	cepts.	
Experiments ca	in be conduc	ted using any of the following or equivalen	t design tools: Cadence/Synopsi	s/Mentor
Graphics/Micro	owind			
		Laboratory Experiment	ts	
		PART - A		
		ASIC-DIGITAL DESIC	GN	
1. Write	Verilog Co	de for the following circuits and their	Test Bench for verification	, observe the
wavefo	rm and syn	thesize the code with technological lib	rary with given constraints*.	Do the initial
timing [.]	verification	with gate level simulation.		
i.	Aninverter			
ii	ABuffer			
iii.	Transmissio	onGate		
iii. iv.	Transmissie Basic/unive	onGate orsalgates		
iii. iv. v.	Transmissi Basic/unive Flip flop -R	onGate ersalgates 2S, D, JK, MS,T		
iii. iv. v. vi.	Transmissi Basic/unive Flip flop -R Serial & Pa	onGate ersalgates RS, D, JK, MS,T .ralleladder		
iii. iv. v. vi. vi. vii.	Transmissi Basic/unive Flip flop -R Serial & Pa 4-bit counte	onGate ersalgates &S, D, JK, MS,T aralleladder er [Synchronous and Asynchronouscounte	er]	
iii. iv. v. vi. vii. vii.	Transmissi Basic/unive Flip flop -R Serial & Pa 4-bit counte Successive	onGate ersalgates RS, D, JK, MS,T tralleladder er [Synchronous and Asynchronouscounte approximation register[SAR]	er]	
iii. iv. v. vi. vii. vii.	Transmissi Basic/unive Flip flop -R Serial & Pa 4-bit counte Successive	onGate ersalgates RS, D, JK, MS,T aralleladder er [Synchronous and Asynchronouscounte approximation register[SAR]	er]	
iii. iv. v. vi. vii. vii.	Transmissi Basic/unive Flip flop -R Serial & Pa 4-bit counte Successive	onGate ersalgates &S, D, JK, MS,T aralleladder er [Synchronous and Asynchronouscounte approximation register[SAR]	er]	
iii. iv. v. vi. vii. vii.	Transmissi Basic/unive Flip flop -R Serial & Pa 4-bit counte Successive	onGate ersalgates RS, D, JK, MS,T aralleladder er [Synchronous and Asynchronouscounte approximation register[SAR]	er]	
iii. iv. v. vi. vii. viii.	Transmissi Basic/unive Flip flop -R Serial & Pa 4-bit counte Successive	onGate ersalgates RS, D, JK, MS,T tralleladder er [Synchronous and Asynchronouscounte approximation register[SAR]	er]	
iii. iv. v. vi. vii. vii.	Transmissi Basic/unive Flip flop -R Serial & Pa 4-bit counte Successive	onGate ersalgates RS, D, JK, MS,T aralleladder er [Synchronous and Asynchronouscounte approximation register[SAR]	er]	
iii. iv. v. vi. vii. vii. viii.	Transmissi Basic/unive Flip flop -R Serial & Pa 4-bit counte Successive	onGate ersalgates RS, D, JK, MS,T ralleladder er [Synchronous and Asynchronouscount approximation register[SAR]	er]	
iii. iv. v. vi. vii. vii.	Transmissi Basic/unive Flip flop -R Serial & Pa 4-bit counte Successive	onGate ersalgates RS, D, JK, MS,T tralleladder er [Synchronous and Asynchronouscounte approximation register[SAR]	er]	
iii. iv. v. vi. vii. viii.	Transmissi Basic/unive Flip flop - K Serial & Pa 4-bit counte Successive	onGate ersalgates RS, D, JK, MS,T uralleladder er [Synchronous and Asynchronouscounte approximation register[SAR]	er]	
iii. iv. v. vi. vii. viii.	Transmissi Basic/unive Flip flop -F Serial & Pa 4-bit counte Successive	onGate ersalgates RS, D, JK, MS,T aralleladder er [Synchronous and Asynchronouscount approximation register[SAR]	er]	

PART - B ANALOG
DESIGN
 Design an Inverter with given specifications**, completing the design flow mentioned below: a. Draw the schematic and verify thefollowing
e. Verify&Optimize for lime,PowerandAreatothegivenconstraint*
 2. Design the (i) Common source and Common Drain amplifier and (ii) A Single Stagedifferentialamplifier, with given specifications**, completing the design flow mentioned below: a. Draw the schematic and verify the following i) DCAnalysis ii) ACAnalysis iii) TransientAnalysis b. Draw the Layout and verify the DRC, ERC c. Check for LVS d. Extract RC and back annotate the same and verify the Design.
 3. Design an op-amp with given specification** using given differential amplifier CommonsourceandCommonDrainamplifierinlibrary***andcompletingthe design flow mentionedbelow: a. Draw the schematic and verify the following i) DC Analysis ii). ACAnalysis iii) Transient Analysis b. Draw the Layout and verify the DRC,ERC c. Check forLVS d. Extract RC and back annotate the same and verify theDesign.
 4. Design a 4 bit R-2R based DAC for the given specification and completing the design flow mentioned using given op-amp in thelibrary***. a. Draw the schematic and verify thefollowing DCAnalysis ACAnalysis TransientAnalysis b. Draw the Layout and verify the DRC,ERC

5. For the SAR based ADC mentioned in the figure below draw the mixed signal schematic and verify the functionality by completing ASIC Design FLOW. [Specifications to GDS-II]

* An appropriate constraint should begiven.

** Appropriate specification should begiven.

*** ApplicableLibraryshouldbeadded&informationshouldbegiventothe Designer.

Course outcomes: On the completion of this laboratory course, the students will be able to:

- Model basic digital circuits, simulate and synthesize using EDA Tool.
- Make use of logic gates to realize shift registers and adders to meet desired parameters.
- Construct and generate layout structure for basic CMOS circuits like inverter, common source amplifier and differential amplifier.
- Experiment with the basic amplifiers to design higher level circuits like operational amplifier and analog/digital converters to meet desired parameters.
- Inspect concepts of DC Analysis, AC Analysis and Transient Analysis in analog circuits.

Conduct of Practical Examination:

- Alllaboratory experiments are to be included for practical examination.
- For examination, one question from PART-A and one question from PART-B to beset.
- Students are allowed to pick one experiment from thelot.
- ChangeofexperimentisallowedonlyonceandMarksallottedtotheprocedure part to be madezero.